Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Since December 2016, autosomal recessive proximal spinal muscular atrophy can be treated with nusinersen. No cure is known to any of the remaining disorders of the spinal muscular atrophies group. The main objective there is to improve quality of life which can be measured using specific questionnaires. Supportive therapies are widely employed for patients who often also require comprehensive medical care involving multiple disciplines, including pulmonology, neurology, orthopedic surgery, critical care, and clinical nutrition. Various forms of physiotherapy and occupational therapy are frequently able to slow down the pace of nerve degeneration and muscle wasting. Patients also benefit greatly from the use of assistive technology.
Orthotic devices can be used to support the body and to aid walking. For example, orthotics such as AFO's (ankle foot orthosis) are used to stabilise the foot and to aid gait, TLSO's (thoracic lumbar sacral orthosis) are used to stabilise the torso. Assistive technologies may help in managing movement and daily activity and greatly increase the quality of life.
Nusinersen (trade name: Spinraza) is the only approved drug to treat spinal muscular atrophy. It is a 2’-O-methoxyethyl, phosphorothioate modified antisense oligonucleotide targeting intronic splicing silencer N1 which is administered directly to the central nervous system using an intrathecal injection. Developed by Ionis Pharmaceuticals and licensed to Biogen, nusinersen was approved by FDA in December 2016, becoming the first approved pharmacological treatment for SMA. It was approved by the European Commission in centralised procedure in June 2017.
In terms of the management of spinal and bulbar muscular atrophy, no cure is known and treatment is supportive. Rehabilitation to slow muscle weakness can prove positive, though the prognosis indicates some individuals will require the use of a wheelchair in later stages of life.
Surgery may achieve correction of the spine, and early surgical intervention should be done in cases where prolonged survival is expected. Preferred nonsurgical treatment occurs due to the high rate of repeated dislocation of the hip.
Currently there is no cure for myotubular or centronuclear myopathies. Treatment often focuses on trying to maximize functional abilities and minimize medical complications, and involvement by physicians specializing in Physical Medicine and Rehabilitation, and by physical therapists and occupational therapists.
Medical management generally involves efforts to prevent pulmonary complications, since lung infections can be fatal in patients lacking the muscle strength necessary to clear secretions via coughing. Medical devices to assist with coughing help patients maintain clear airways, avoiding mucous plugs and avoiding the need for tracheostomy tubes.
Monitoring for scoliosis is also important, since weakness of the trunk muscles can lead to deviations in spinal alignment, with resultant compromise of respiratory function. Many patients with congenital myopathies may eventually require surgical treatment of scoliosis.
Currently this sub-type of muscular dystrophy has no cure and no "definitive" treatment exists. Treatment offers preventative tactics to delay muscle breakdown and increase life expectancy. Stretching and physical therapy can increase mobility. Treatment also includes correcting skeletal abnormalities through orthopedic surgery and other orthopedic techniques. Antiepileptic medication is administered to help prevent seizures. ACE inhibitors and beta blockers help treat heart conditions, and respiratory assistance is more than likely needed at some point for the affected individual
There is no known cure to DSMA1, and care is primarily supportive. Patients require respiratory support which may include non-invasive ventilation or tracheal intubation. The child may also undergo additional immunisations and offered antibiotics to prevent respiratory infections. Maintaining a healthy weight is also important. Patients are at risk of undernutrition and weight loss because of the increased energy spent for breathing. Physical and occupational therapy for the child can be very effective in maintaining muscle strength.
There is no published practice standard for the care in DSMA1, even though the Spinal Muscular Atrophy Standard of Care Committee has been trying to come to a consensus on the care standards for DSMA1 patients. The discrepancies in the practitioners’ knowledge, family resources, and differences in patient’s culture and/or residency have played a part in the outcome of the patient.
The treatment (management) of Emery–Dreifuss muscular dystrophy can be done via several methods, however secondary complications should be consider in terms of the progression of EDMD, therefore cardiac defibrillators may be needed at some point by the affected individual. Other possible forms of management and treatment are the following:
- Orthopaedics
- Surgery
- Monitor/treat any cardiac issues
- Respiratory aid
- Physical therapy
Congenital dSMA has a relatively stable disease course, with disability mainly attributed to increased contractures rather than loss of muscle strength. Individuals frequently use crutches, knee, ankle, and/or foot orthoses, or wheelchairs. Orthopaedic surgery can be an option for some patients with severely impaired movement. Physical therapy and occupational therapy can help prevent further contractures from occurring, though they do not reverse the effects of preexisting ones. Some literature suggests the use of electrical stimulation or botulinum toxin to halt the progression of contractures.
Treatment for Ullrich congenital muscular dystrophy can consist of physical therapy and regular stretching. Respiratory support may be needed at some point by the affected individual.
Though cardiac complications are not a concern in this type of CMD, in regards to respiratory issues ventilation via a tracheostomy is a possibility in some cases.
Physical therapy is the predominant treatment of symptoms. Orthopedic shoes and foot surgery can be used to manage foot problems.
There is currently no known pharmacological treatment to hereditary motor and sensory neuropathies. However, the majority of people with these diseases are able to walk and be self-sufficient. Some methods of relief for the disease include physical therapy, stretching, braces, and sometimes orthopedic surgery. Since foot disorders are common with neuropathy disorders precautions must be taken to strengthen these muscles and use preventative care and physical therapy to prevent injury and deformities.
There is no cure for MMA. Treatment consists of muscle strengthening exercises and training in hand coordination. It has been proposed that the changes in this disease are from compression of the spinal cord in flexion due to forward shifting of the posterior dural sac. There have been treatments studies ranging from use of a cervical collar to anterior cervical fusion and posterior decompression.
Currently, there is no cure for muscular dystrophy. In terms of management, physical therapy, occupational therapy, orthotic intervention (e.g., ankle-foot orthosis), speech therapy, and respiratory therapy may be helpful. Low intensity corticosteroids such as prednisone, and deflazacort may help to maintain muscle tone. Orthoses (orthopedic appliances used for support) and corrective orthopedic surgery may be needed to improve the quality of life in some cases. The cardiac problems that occur with EDMD and myotonic muscular dystrophy may require a pacemaker. The myotonia (delayed relaxation of a muscle after a strong contraction) occurring in myotonic muscular dystrophy may be treated with medications such as quinine.
Occupational therapy assists the individual with MD to engage in activities of daily living (such as self-feeding and self-care activities) and leisure activities at the most independent level possible. This may be achieved with use of adaptive equipment or the use of energy-conservation techniques. Occupational therapy may implement changes to a person's environment, both at home or work, to increase the individual's function and accessibility; furthermore, it addresses psychosocial changes and cognitive decline which may accompany MD, and provides support and education about the disease to the family and individual.
Currently no cure or specific treatment exists to eliminate the symptoms or stop the disease progression. A consistent diet planned with the help of a dietitian along with exercises taught by a speech therapist can assist with mild symptoms of dysphagia. Surgical intervention can also help temporarily manage symptoms related to the ptosis and dysphagia. Cutting one of the throat muscles internally, an operation called cricopharyngeal myotomy, can be one way to ease symptoms in more severe cases.
Physical therapy and specifically designed exercises may assist with proximal limb weakness, though there is still no current definitive data showing it will stop the progress of the disease. Many of those affected with the proximal limb weakness will eventually require assistive devices such as a wheelchair. As with all surgical procedures, they come with many risk factors. As the dysphagia becomes more severe, patients become malnourished, lose significant weight, become dehydrated and suffer from repeated incidents of aspiration pneumonia. These last two are often the cause of death.
In terms of the management of congenital muscular dystrophy the American Academy of Neurology recommends that the individuals
need to have monitoring of cardiac function, respiratory, and gastrointestinal. Additionally it is believed that therapy in speech, orthopedic and physical areas, would improve the persons quality of life.
While there is currently no cure available, it is important to preserve muscle activity and any available correction of skeletal abnormalities (as scoliosis).Orthopedic procedures, like spinal fusion, maintains/increases the individuals prospect for more physical movement.
Currently, there are no treatments for any of the congenital myopathies. Depending on the severity, there are different therapies available to help alleviate any pain and aid patients in performing varying activities. For example, many congenital myopathy patients are involved in physical or occupational therapy in an attempt to strengthen their skeletal muscles. Orthopedic surgery is usually necessary to correct skeletal deformities secondary to muscle weakness, such as scoliosis. Survival is typically determined by the level of respiratory muscle insufficiency.
The prognosis of this sub-type of MD indicates that the affected individual may eventually have feeding difficulties. Surgery, at some point, might be an option for scoliosis.
Scoliosis which is a sideways curve of the persons vertebrate, is determined by a variety of factors, including the degree (mild or severe), in which case if possible a brace might be used by the individual
Treatment for limb-girdle muscular dystrophy can take the form of exercise and physical therapy which are advised to maintain as much muscle strength and joint flexibility as possible, there are few studies corroborating the effectiveness of exercise. Physical therapy and exercise "may" prevent the rapid progression of the disease rather than halt or reverse it. Calipers, as an example, may be used to maintain mobility and quality of life. Careful attention to lung and heart health is required, corticosteroids in LGMD 2C-F individuals, shows some improvement
Additionally individuals can follow "management" that follows:
- Occupational therapy
- Respiratory therapy
- Speech therapy
- Neutralizing antibody to myostatin should not be pursued
In terms of the prognosis of limb-girdle muscular dystrophy in its mildest form, affected individuals have near-normal muscle strength and function. LGMD isn't typically a fatal disease, though it may eventually weaken the heart and respiratory muscles, leading to illness or death due to secondary disorders. The frequency of limb-girdle muscular dystrophy ranges from 1 in 14,500 (in some instances 1 in 123,000)
Prognosis depends on the individual form of MD. In some cases, a person with a muscle disease will get progressively weaker to the extent that it shortens lifespan due to heart and breathing complications. However, some of the muscle diseases do not affect life expectancy at all, and ongoing research is attempting to find cures and treatments to slow muscle weakness.
There is currently no cure for the disease but treatments to help the symptoms are available.
RG2833, a histone deacetylase inhibitor developed by Repligen, was acquired by BioMarin Pharmaceutical in January 2014. The first human trials with this compound began in 2012.
Horizon Pharma's development plan of interferon gamma-1B for treatment of FA was given fast track designation by the Food and Drug Administration in 2015.
In its trials released in December 2016, however, the results showed no improvements over placebo in patients.
A 2006 study followed 223 patients for a number of years. Of these, 15 died, with a median age of 65 years. The authors tentatively concluded that this is in line with a previously reported estimate of a shortened life expectancy of 10-15 years (12 in their data).
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.
Fukuyama congenital muscular dystrophy has a poor prognosis. Most children with FCMD reach a maximum mobility at sitting upright and sliding. Due to the compounded effects of continually worsening heart problems, impaired mental development, problems swallowing and additional complications, children with FCMD rarely live through adolescence, the disorder proves fatal by age 20.