Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Idebenone, an antioxidant, was recently removed from the Canadian market in 2013 due to lack of effectiveness. A Cochrane review on antioxidants and other pharmacological treatment of patients with Friedreich ataxia concluded that there is limited but not persuasive evidence of efficacy.
Nicotinamide administration on patients was associated with a sustained improvement in frataxin concentrations towards those seen in asymptomatic carriers during 8 weeks of daily dosing. The daily oral administration of 3.8 g nicotinamide resulted in a 1.5-times increase, whereas 7.5 g resulted in a doubling of frataxin protein concentration.
There is currently no cure for SCA 6; however, there are supportive treatments that may be useful in managing symptoms.
There is no cure for spinocerebellar ataxia, which is currently considered to be a progressive and irreversible disease, although not all types cause equally severe disability.
In general, treatments are directed towards alleviating symptoms, not the disease itself. Many patients with hereditary or idiopathic forms of ataxia have other symptoms in addition to ataxia. Medications or other therapies might be appropriate for some of these symptoms, which could include tremor, stiffness, depression, spasticity, and sleep disorders, among others. Both onset of initial symptoms and duration of disease are variable. If the disease is caused by a polyglutamine trinucleotide repeat CAG expansion, a longer expansion may lead to an earlier onset and a more radical progression of clinical symptoms. Typically, a person afflicted with this disease will eventually be unable to perform daily tasks (ADLs). However, rehabilitation therapists can help patients to maximize their ability of self-care and delay deterioration to certain extent. Researchers are exploring multiple avenues for a cure including RNAi and the use of Stem Cells and several other avenues.
On January 18, 2017 BioBlast Pharma announced completion of Phase 2a clinical trials of their medication, Trehalose, in the treatment of SCA3. BioBlast has received FDA Fast Track status and Orphan Drug status for their treatment. The information provided by BioBlast in their research indicates that they hope this treatment may prove efficacious in other SCA treatments that have similar pathology related to PolyA and PolyQ diseases.
In addition, Dr. Beverly Davidson has been working on a methodology using RNAi technology to find a potential cure for over 2 decades. Her research began in the mid-1990s and progressed to work with mouse models about a decade later and most recently has moved to a study with non-human primates. The results from her most recent research "are supportive of clinical application of this gene therapy". Dr. Davidson along with Dr. Pedro Gonzalez-Alegre are currently working to move this technique into a Phase 1 clinical trial.
Finally, another gene transfer technology discovered in 2011 has also been shown by Dr. Davidson to hold great promise and offers yet another avenue to a potential future cure.
Physical therapists can assist patients in maintaining their level of independence through therapeutic exercise programmes. One recent research report demonstrated a gain of 2 SARA points (Scale for the Assessment and Rating of Ataxia) from physical therapy. In general, physical therapy emphasises postural balance and gait training for ataxia patients. General conditioning such as range-of-motion exercises and muscle strengthening would also be included in therapeutic exercise programmes. Research showed that spinocerebellar ataxia 2 (SCA2) patients with a mild stage of the disease gained significant improvement in static balance and neurological indices after six months of a physical therapy exercise training program. Occupational therapists may assist patients with incoordination or ataxia issues through the use of adaptive devices. Such devices may include a cane, crutches, walker, or wheelchair for those with impaired gait. Other devices are available to assist with writing, feeding, and self care if hand and arm coordination are impaired. A randomised clinical trial revealed that an intensive rehabilitation program with physical and occupational therapies for patients with degenerative cerebellar diseases can significantly improve functional gains in ataxia, gait, and activities of daily living. Some level of improvement was shown to be maintained 24 weeks post-treatment. Speech language pathologists may use both behavioral intervention strategies as well as augmentative and alternative communication devices to help patients with impaired speech.
There is no cure for Machado-Joseph Disease. However, treatments are available for some symptoms. For example, spasticity can be reduced with antispasmodic drugs, such as baclofen. The Parkinsonian symptoms can be treated with levodopa therapy. Prism glasses can reduce diplopic symptoms. Physiotherapy/Physical Therapy and/or occupational therapy can help patients by prescribing mobility aids to increase the patients' independence, providing gait training, and prescribing exercises to maintain the mobility of various joints and general health to decrease the likelihood of falls or injuries as a result of falls. Walkers and wheelchairs can greatly help the patient with everyday tasks. Some patients will experience difficulties with speech and swallowing, therefore a Speech-Language Pathologist can assist the patients to improve their communicating abilities and their issues with swallowing.
In terms of a cure there is currently none available, however for the disease to manifest itself, it requires mutant gene expression. Manipulating the use of protein homoestasis regulators can be therapuetic agents, or a treatment to try and correct an altered function that makes up the pathology is one current idea put forth by Bushart, et al. There is some evidence that for SCA1 and two other polyQ disorders that the pathology can be reversed after the disease is underway. There is no effective treatments that could alter the progression of this disease, therefore care is given, like occupational and physical therapy for gait dysfunction and speech therapy.
Physiotherapy intervention aims to improve balance and gait of OPCA patients, by stimulating neuroplastic changes in the atrophied neural structure. A challenge-oriented treatment program has previously been shown to be beneficial for individuals with ataxia from OPCA. The treatment program was composed of repetitive training with task challenges (e.g. obstacle course) and/or novel motor skills acquisition over a 12-week period under the supervision of a physiotherapist. Task challenges were progressed only when the patient showed mastery of a task.
Overground harness systems may be used to allow OPCA patients to challenge their balance without chance of falling. Furthermore, home exercise programs and/or aquatic exercises are used to allow more repetitions to facilitate balance learning. Treatment programs should be frequently monitored and adjusted based on a patient's progress. Outcome measures such as the Berg Balance Scale, Dynamic Gait Index and activities-specific balance confidence scales are useful to assess patient’s progress over time.
There is no known cure to BVVL however a Dutch group have reported the first promising attempt at treatment of the disorder with high doses of riboflavin. This Riboflavin protocol seems to be beneficial in almost all cases. Specialist medical advice is of course essential to ensure the protocol is understood and followed correctly.
Patients will almost certainly require additional symptomatic treatment and supportive care. This must be specifically customized to the needs of the individual but could include mobility aids, hearing aids or cochlear implants, vision aids, gastrostomy feeding and assisted ventilation, while steroids may or may not help patients.
The first report of BVVL syndrome in Japanese literature was of a woman that had BVVL and showed improvement after such treatments. The patient was a sixty-year-old woman who had symptoms such as sensorineural deafness, weakness, and atrophy since she was 15 years old. Around the age of 49 the patient was officially diagnosed with BVVL, incubated, and then attached to a respirator to improve her CO2 narcosis. After the treatments, the patient still required respiratory assistance during sleep; however, the patient no longer needed assistance by a respirator during the daytime.
Treatment is palliative, not curative (as of 2009).
Treatment options for lower limb weakness such as foot drop can be through the use of Ankle Foot Orthoses (AFOs) which can be designed or selected by an Orthotist based upon clinical need of the individual. Sometimes tuning of rigid AFOs can enhance knee stability.
Currently, no treatment slows the neurodegeneration in any of the neuroacanthocytosis disorders. Medication may be administered to decrease the involuntary movements produced by these syndromes. Antipsychotics are used to block dopamine, anticonvulsants treat seizures and botulinum toxin injections may control dystonia. Patients usually receive speech, occupational and physical therapies to help with the complications associated with movement. Sometimes, physicians will prescribe antidepressants for the psychological problems that accompany neuroacanthocytosis. Some success has been reported with Deep brain stimulation.
Mouthguards and other physical protective devices may be useful in preventing damage to the lips and tongue due to the orofacial chorea and dystonia typical of chorea acanthocytosis.
There is no cure for GSS, nor is there any known treatment to slow the progression of the disease. However, therapies and medication are aimed at treating or slowing down the effects of the symptoms. Their goal is to try to improve the patient's quality of life as much as possible. Despite there being no cure for GSS, it is possible to undergo testing for the presence of the underlying genetic mutation. Testing for GSS involves a blood and DNA examination in order to attempt to detect the mutated gene at certain codons. If the genetic mutation is present, the patient will eventually be afflicted by GSS, and, due to the genetic nature of the disease, the offspring of the patient are predisposed to a higher risk of inheriting the mutation.
Currently treatment is only symptomatic and palliative. Treatment for manifestations, such as seizures, dystonia, sleep disorders, depression and anxiety, can be effectively managed. Physical and occupational therapy is recommended to help patients retain fine motor function for as long as possible Recent progress has been made in the application of enzyme-replacement, gene, and stem cell therapies for patients.
Because lack of sialic acid appears to be part of the pathology of IBM caused by GNE mutations, clinical trials with sialic acid supplements, and with a precursor of sialic acid, N-Acetylmannosamine, have been conducted, and as of 2016 further trials were planned.
There have been no major breakthroughs in the treatment of PKAN, with most pharmacologic treatments focusing on the easing or temporary relieving of PKAN’s symptoms. Iron chelating agents have been used somewhat successfully in retarding the disorder, but they have not been a significant success.
Current research focuses on the future use of high dose pantothenate, the PANK2 enzyme substrate, in possibly alleviating symptoms as well as the further development of iron chelating agents that may be better aimed at reaching the central nervous system and working to better remove excess iron from the individual’s system.
Complications may result from the medication used to treat symptoms. Immobility from the disease can also lead to skin breakdown, respiratory infections, and blood clots, among others.
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.
There is no cure for Canavan disease, nor is there a standard course of treatment. Treatment is symptomatic and supportive. There is also an experimental treatment using lithium citrate. When a person has Canavan disease, his or her levels of N-acetyl aspartate are chronically elevated. The lithium citrate has proven in a rat genetic model of Canavan disease to be able to significantly decrease levels of N-acetyl aspartate. When tested on a human, the subject's condition reversed during a two-week wash-out period after withdrawal of lithium.
The investigation revealed both decreased N-acetyl aspartate levels in regions of the brain tested and magnetic resonance spectroscopic values that are more characteristic of normal development and myelination. This evidence suggests that a larger controlled trial of lithium may be warranted as supportive therapy for children with Canavan disease.
Experimental gene therapy trial results, published in 2002, used a healthy gene to take over for the defective one that causes Canavan disease.
In human trials, the results of which were published in 2012, this method appeared to improve the life of the patient without long-term adverse effects during a 5-year follow-up.
Treatment is dependent upon diagnosis and the stage at which the diagnosis is secured. For toxic and nutritional optic neuropathies, the most important course is to remove the offending agent if possible and to replace the missing nutritional elements, orally, intramuscularly, or intravenously. If treatment is delayed, the injury may be irreversible. The course of treatment varies with the congenital forms of these neuropathies. There are some drug treatments that have shown modest success, such as Idebenone used to treat LOHN. Often treatment is relegated to lifestyle alterations and accommodations and supportive measures.
Currently there is no curative treatment for KSS. Because it is a rare condition, there are only case reports of treatments with very little data to support their effectiveness. Several promising discoveries have been reported which may support the discovery of new treatments with further research. Satellite cells are responsible for muscle fiber regeneration. It has been noted that mutant mtDNA is rare or undetectable in satellite cells cultured from patients with KSS. Shoubridge et al. (1997) asked the question whether wildtype mtDNA could be restored to muscle tissue by encouraging muscle regeneration. In the forementioned study, regenerating muscle fibers were sampled at the original biopsy site, and it was found that they were essentially homoplasmic for wildtype mtDNA. Perhaps with future techniques of promoting muscle cell regeneration and satellite cell proliferation, functional status in KSS patients could be greatly improved.
One study described a patient with KSS who had reduced serum levels of coenzyme Q10. Administration of 60–120 mg of Coenzyme Q10 for 3 months resulted in normalization of lactate and pyruvate levels, improvement of previously diagnosed first degree AV block, and improvement of ocular movements.
A screening ECG is recommended in all patients presenting with CPEO. In KSS, implantation of pacemaker is advised following the development of significant conduction disease, even in asymptomatic patients.
Screening for endocrinologic disorders should be performed, including measuring serum glucose levels, thyroid function tests, calcium and magnesium levels, and serum electrolyte levels. Hyperaldosteronism is seen in 3% of KSS patients.
There is currently no defined treatment to ameliorate the muscle weakness of CPEO. Treatments used to treat other pathologies causing ophthalmoplegia has not been shown to be effective.
Experimental treatment with tetracycline has been used to improve ocular motility in one patient. Coenzyme Q has also been used to treat this condition. However, most neuro-ophthalmologists do not ascribe to any treatment.
Ptosis associated with CPEO may be corrected with surgery to raise the lids, however due to weakness of the orbicularis oculi muscles, care must be taken not to raise the lids in excess causing an inability to close the lids. This results in an exposure keratopathy. Therefore, rarely should lid surgery be performed and only by a neuro-ophthalmologist familiar with the disease.
The most common strabismus finding is large angle exotropia which can be treated by maximal bilateral eye surgery, but due to the progressive nature of the disease, strabismus may recur. Those that have diplopia as a result of asymmetric ophthalmoplegia may be corrected with prisms or with surgery to create a better alignment of the eyes.
No specific treatment is known that would prevent, slow, or reverse HSP. Available therapies mainly consist of symptomatic medical management and promoting physical and emotional well-being. Therapeutics offered to HSP patients include:
- Baclofen – a voluntary muscle relaxant to relax muscles and reduce tone. This can be administered orally or intrathecally. (Studies in HSP )
- Tizanidine – to treat nocturnal or intermittent spasms (studies available )
- Diazepam and clonazepam – to decrease intensity of spasms
- Oxybutynin chloride – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Tolterodine tartate – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Botulinum toxin – to reduce muscle overactivity (existing studies for HSP patients)
- Antidepressants (such as selective serotonin re-uptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors) – for patients experiencing clinical depression
- Physical therapy – to restore and maintain the ability to move; to reduce muscle tone; to maintain or improve range of motion and mobility; to increase strength and coordination; to prevent complications, such as frozen joints, contractures, or bedsores.
There is no cure or treatment for GSS. It can, however, be identified through genetic testing. GSS is the slowest to progress among human prion diseases. Duration of illness can range from 3 months to 13 years, with an average duration of 5 or 6 years.
Treatment is limited. Drugs can alleviate the symptoms, such as sleep difficulties and epilepsy. Physiotherapy helps affected children retain the ability to remain upright for as long as possible, and prevents some of the pain.
Recent attempts to treat INCL with cystagon have been unsuccessful.
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
"For many years, it was thought that postural and balance disorders in cerebellar ataxia were not treatable. However, the results of several recent studies suggest that rehabilitation can relieve postural disorders in patients with cerebellar ataxia...There is now moderate level evidence that rehabilitation is efficient to improve postural capacities of patients with cerebellar ataxia – particularly in patients with degenerative ataxia or multiple sclerosis. Intensive rehabilitation programs with balance and coordination exercises are necessary. Although techniques such as virtual reality, biofeedback, treadmill exercises with supported bodyweight and torso weighting appear to be of value, their specific efficacy has to be further investigated. Drugs have only been studied in degenerative ataxia, and the level of evidence is low."
One approach is that it can be ameliorated to varying degrees by means of Frenkel exercises.
One main objective of the treatment is to re-establish the physiological inhibition exerted by the cerebellar cortex over cerebellar nuclei. Research using Transcranial direct-current stimulation (TCDCS) and Transcranial magnetic stimulation (TMS) shows promising results.
Additionally, mild to moderate cerebellar ataxia may be treatable with buspirone.
It is thought that the buspirone increases the serotonin levels in the cerebellum and so decreases ataxia.