Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for this condition entails surveillance of growth and contractures. Furthermore the following are treatment options:
- Thyroid hormone replacement
- Speech therapy
- Hearing aids
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
Treatment usually involves plastic and reconstructive surgery. Surgery may be needed to correct undescended testes or hernias.
In terms of treatment/management for those with Mulibrey nanism should have routine medical follow-ups, additionally the following can be done:
- Growth hormone treatment
- Regular pelvic exams
- Pericardiectomy
There are no treatment to return to its normal functions. However, there are treatments for the different symptoms.
For the Developmental symptoms, Educational intervention and speech therapy beginning in infancy could help to reduce the high risk for motor, cognitive, speech, and language delay
For theSkeletal features, referral to an orthopedist for consideration of surgical release of contractures. In addition,early referral to physical therapy could help increase joint mobility.
Lastly, Thyroid hormone replacement could help out the thyroid dysfunction
Unfortunately, there is not one specific treatment option that can rid a person of this syndrome. However, there are many routes one can take to make living with this disease a lot easier. For example, there are many treatment programs that doctors can specialize for patients and their needs. Meeting with a doctor is very crucial and these specializations can be very useful. Also, one can seek help from pediatricians, EENT doctors, audiologists, and orthopedists. Brace fittings, hearing aids, and physical therapy can also be pushed by one's doctor, so that a patient can live normally. Additionally, anticonvulsant drugs can be used to stop seizures.
There is currently no cure for GAPO syndrome, but some options are available to reduce the symptoms. Nearsightedness, which affects some sufferers of the disease, can be treated by corrective lenses. Unfortunately, optic atrophy as a result of degradation of the optic nerve (common with GAPO syndrome) cannot be corrected. Corticosteroids have been proposed as a treatment for optic nerve atrophy, but their effectiveness is disputed, and no steroid based treatments are currently available.
This disease has not been shown to be life-threatening or the cause of death in patients. However, treatment is necessary to maintain a healthy lifestyle.
Most recent methods of treatment take the form of surgeries such as oral prophylaxis, followed by post-surgical therapies to monitor, provide proper oral hygiene, and correct the deformity. Although, the nature of recurrence post-treatment is virtually unknown, let alone what type of treatment is most effective for HGF. (SOURCE 2) In some cases, there is re-growth after surgical removal of the excess gingival tissues, in others there is minimal. No cases yet have shown any particular treatment or form of medicine to permanently remove HGF.
One type of procedure that can be executed is as follows: Removal of excess tissue under anesthesia through an internal bevel gingivectomy or undisplaced flap followed by gingivoplasty and continuous sling suture placements and periodontal dressing; after about a week of recovery after the surgery, remove sutures and periodically do observational evaluations to look for any signs of re-occurrence.
Treatment is symptomatic, often addressing indicators associated with peripheral pulmonary artery stenosis. Laryngotracheal calcification resulting in dyspnea and forceful breathing can be treated with bronchodilators including the short and long-acting β2-agonists, and various anticholinergics. Prognosis is good, yet life expectancy depends on the severity and extent of diffuse pulmonary and arterial calcification.
The treatment (management) of Emery–Dreifuss muscular dystrophy can be done via several methods, however secondary complications should be consider in terms of the progression of EDMD, therefore cardiac defibrillators may be needed at some point by the affected individual. Other possible forms of management and treatment are the following:
- Orthopaedics
- Surgery
- Monitor/treat any cardiac issues
- Respiratory aid
- Physical therapy
The physical abnormalities resulting from SCS are typically mild and only require a minor surgical procedure or no procedure at all. One of the common symptoms of SCS is the development of short (brachydactyly), webbed fingers and broad toes (syndactyly). These characteristics do not cause any problems to the function of the hands or feet, and thus, no medical procedure is required to fix the abnormalities, unless the patient requests it. Webbing of the fingers may affect the base of the fingers, resulting in delayed hand growth during childhood, but this contributes no functional impairments. Sometimes, individuals with SCS develop broad toes because the bones at the ends of the toes are duplicating themselves. This is especially seen in the big toe, but requires no surgical intervention because it doesn't negatively affect the overall function of the foot. Individuals with these toe abnormalities walk normally and can wear normal footwear.
In more severe cases, frequent surgeries and clinical monitoring are required throughout development. A child born with asymmetrical unilateral coronal synostosis should undergo cranioplasty within its first year of life in order to prevent increased intracranial pressure and to prevent progressive facial asymmetry. Cranioplasty is a surgical procedure to correct prematurely fused cranial bones. The surgery acts to reconstruct and reposition the bones and sutures in order to promote the most normal growth. Cranioplasty is necessary in order to continue to grow and is important for two main reasons. First of all, the skull needs to be able to accommodate the growing brain following childbirth, which it can't because the skull doesn't grow as fast as the brain as long as the sutures remain fused. This results in an increase in pressure surrounding the brain and inhibits the brain from growing, causing the individual to experience significant problems, and if left untreated can eventually lead to death. Secondly, cranioplasty may be required for appearance purposes. This is especially the case in individuals with asymmetrical unilateral coronal synostosis, which requires reconstructive surgery of the face and skull. If cranioplasty is not performed, especially in individuals with unilateral coronal synostosis, then facial asymmetry will get worse and worse over time, which is why cranioplasty should be performed as soon as possible.
Surgery may also be required in individuals with vision problems. Vision problems usually arise due to a lack of space in the eye orbit and skull because of the abnormal bone structure of the face. Decreased space may also lead to abnormal or missing tear ducts and nerve damage. Reconstructive surgery is usually required in order to increase cranial space, correct tear duct stenosis, and/or correct ptosis of the eyelids in order to prevent amblyopia (lazy eye).
Midfacial surgery may also be required during early childhood to correct respiratory problems, dental malocclusion, and swallowing difficulties. A cleft palate is also corrected with surgery, and may involve the use of tympanostomy tubes. If needed, an individual will undergo orthognathic treatment and/or orthodontic treatment after facial development is complete. Since hearing loss is frequently associated with SCS, it is recommended that audiology screening persist throughout childhood.
After cranial reconstructive surgery, a child may be required to wear a molding helmet or some other form of head protection until the cranial bones set into place. This typically takes about three months and depends on the child's age and the severity of the condition. Following recovery, individuals with SCS look and act completely normal, so no one would even be able to tell that they have SCS.
The treatment of 2-Hydroxyglutaric aciduria is based on seizure control, the prognosis depends on how severe the condition is.
Since interleukin 1β plays a central role in the pathogenesis of the disease, therapy typically targets this cytokine in the form of monoclonal antibodies (such as canakinumab), binding proteins/traps (such as rilonacept), or interleukin 1 receptor antagonists (such as anakinra). These therapies are generally effective in alleviating symptoms and substantially reducing levels of inflammatory indices. Case reports suggest that thalidomide and the anti-IL-6 receptor antibody tocilizumab may also be effective.
There is no cure for spinocerebellar ataxia, which is currently considered to be a progressive and irreversible disease, although not all types cause equally severe disability.
In general, treatments are directed towards alleviating symptoms, not the disease itself. Many patients with hereditary or idiopathic forms of ataxia have other symptoms in addition to ataxia. Medications or other therapies might be appropriate for some of these symptoms, which could include tremor, stiffness, depression, spasticity, and sleep disorders, among others. Both onset of initial symptoms and duration of disease are variable. If the disease is caused by a polyglutamine trinucleotide repeat CAG expansion, a longer expansion may lead to an earlier onset and a more radical progression of clinical symptoms. Typically, a person afflicted with this disease will eventually be unable to perform daily tasks (ADLs). However, rehabilitation therapists can help patients to maximize their ability of self-care and delay deterioration to certain extent. Researchers are exploring multiple avenues for a cure including RNAi and the use of Stem Cells and several other avenues.
On January 18, 2017 BioBlast Pharma announced completion of Phase 2a clinical trials of their medication, Trehalose, in the treatment of SCA3. BioBlast has received FDA Fast Track status and Orphan Drug status for their treatment. The information provided by BioBlast in their research indicates that they hope this treatment may prove efficacious in other SCA treatments that have similar pathology related to PolyA and PolyQ diseases.
In addition, Dr. Beverly Davidson has been working on a methodology using RNAi technology to find a potential cure for over 2 decades. Her research began in the mid-1990s and progressed to work with mouse models about a decade later and most recently has moved to a study with non-human primates. The results from her most recent research "are supportive of clinical application of this gene therapy". Dr. Davidson along with Dr. Pedro Gonzalez-Alegre are currently working to move this technique into a Phase 1 clinical trial.
Finally, another gene transfer technology discovered in 2011 has also been shown by Dr. Davidson to hold great promise and offers yet another avenue to a potential future cure.
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
Physical therapists can assist patients in maintaining their level of independence through therapeutic exercise programmes. One recent research report demonstrated a gain of 2 SARA points (Scale for the Assessment and Rating of Ataxia) from physical therapy. In general, physical therapy emphasises postural balance and gait training for ataxia patients. General conditioning such as range-of-motion exercises and muscle strengthening would also be included in therapeutic exercise programmes. Research showed that spinocerebellar ataxia 2 (SCA2) patients with a mild stage of the disease gained significant improvement in static balance and neurological indices after six months of a physical therapy exercise training program. Occupational therapists may assist patients with incoordination or ataxia issues through the use of adaptive devices. Such devices may include a cane, crutches, walker, or wheelchair for those with impaired gait. Other devices are available to assist with writing, feeding, and self care if hand and arm coordination are impaired. A randomised clinical trial revealed that an intensive rehabilitation program with physical and occupational therapies for patients with degenerative cerebellar diseases can significantly improve functional gains in ataxia, gait, and activities of daily living. Some level of improvement was shown to be maintained 24 weeks post-treatment. Speech language pathologists may use both behavioral intervention strategies as well as augmentative and alternative communication devices to help patients with impaired speech.
DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome is a genetic disease which is inherited in an autosomal recessive fashion. DOOR syndrome is characterized by mental retardation, sensorineural deafness, abnormal nails and phalanges of the hands and feet, and variable seizures. A similar deafness-onychodystrophy syndrome is transmitted as an autosomal dominant trait and has no mental retardation. Some authors have proposed that it may be the same as Eronen Syndrome, but since both disorders are extremely rare it is hard to make a determination.
No specific treatment is known that would prevent, slow, or reverse HSP. Available therapies mainly consist of symptomatic medical management and promoting physical and emotional well-being. Therapeutics offered to HSP patients include:
- Baclofen – a voluntary muscle relaxant to relax muscles and reduce tone. This can be administered orally or intrathecally. (Studies in HSP )
- Tizanidine – to treat nocturnal or intermittent spasms (studies available )
- Diazepam and clonazepam – to decrease intensity of spasms
- Oxybutynin chloride – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Tolterodine tartate – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Botulinum toxin – to reduce muscle overactivity (existing studies for HSP patients)
- Antidepressants (such as selective serotonin re-uptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors) – for patients experiencing clinical depression
- Physical therapy – to restore and maintain the ability to move; to reduce muscle tone; to maintain or improve range of motion and mobility; to increase strength and coordination; to prevent complications, such as frozen joints, contractures, or bedsores.
Marinesco–Sjögren syndrome (MSS), sometimes spelled Marinescu–Sjögren syndrome, is a rare autosomal recessive disorder.
There is no cure for retinitis pigmentosa, but the efficacy and safety of various prospective treatments are currently being evaluated. The efficiency of various supplements, such as Vitamin A, DHA, and Lutein, in delaying disease progression remains an unresolved, yet prospective treatment option. Clinical trials investigating optic prosthetic devices, gene therapy mechanisms, and retinal sheet transplantations are active areas of study in the partial restoration of vision in retinitis pigmentosa patients.
Studies have demonstrated the delay of rod photoreceptor degeneration by the daily intake of 15000 IU (equivalent to 4.5 mg) of vitamin A palmitate; thus, stalling disease progression in some patients. Recent investigations have shown that proper vitamin A supplementation can postpone blindness by up to 10 years (by reducing the 10% loss pa to 8.3% pa) in some patients in certain stages of the disease.
The Argus retinal prosthesis became the first approved treatment for the disease in February 2011, and is currently available in Germany, France, Italy, and the UK. Interim results on 30 patients long term trials were published in 2012. The Argus II retinal implant has also received market approval in the US. The device may help adults with RP who have lost the ability to perceive shapes and movement to be more mobile and to perform day-to-day activities. In June 2013, twelve hospitals in the US announced they would soon accept consultation for patients with RP in preparation for the launch of Argus II later that year. The Alpha-IMS is a subretinal implant involving the surgical implantation of a small image-recording chip beneath the optic fovea. Measures of visual improvements from Alpha-IMS studies require the demonstration of the device's safety before proceeding with clinical trials and granting market approval.
The goal of gene therapy studies is to virally supplement retinal cells expressing mutant genes associated with the retinitis pigmentosa phenotype with healthy forms of the gene; thus, allowing the repair and proper functioning of retinal photoreceptor cells in response to the instructions associated with the inserted healthy gene. Clinical trials investigating the insertion of the healthy RPE65 gene in retinas expressing the LCA2 retinitis pigmentosa phenotype measured modest improvements in vision; however, the degradation of retinal photoreceptors continued at the disease-related rate. Likely, gene therapy may preserve remaining healthy retinal cells while failing to repair the earlier accumulation of damage in already diseased photoreceptor cells. Response to gene therapy would theoretically benefit young patients exhibiting the shortest progression of photoreceptor decline; thus, correlating to a higher possibility of cell rescue via the healthy inserted gene.
No specific treatment for CADASIL is available. While most treatments for CADASIL patients' symptoms – including migraine and stroke – are similar to those without CADASIL, these treatments are almost exclusively empiric, as data regarding their benefit to CADASIL patients is limited. Antiplatelet agents such as aspirin, dipyridamole, or clopidogrel might help prevent strokes; however, anticoagulation may be inadvisable given the propensity for microhemorrhages. Control of high blood pressure is particularly important in CADASIL patients. Short-term use of atorvastatin, a statin-type cholesterol-lowering medication, has not been shown to be beneficial in CADASIL patients' cerebral hemodynamic parameters, although treatment of comorbidities such as high cholesterol is recommended. Stopping oral contraceptive pills may be recommended. Some authors advise against the use of triptan medications for migraine treatment, given their vasoconstrictive effects, although this sentiment is not universal. As with other individuals, people with CADASIL should be encouraged to quit smoking.
In one small study, around 1/3 of patients with CADASIL were found to have cerebral microhemorrhages (tiny areas of old blood) on MRI.
L-arginine, a naturally occurring amino acid, has been proposed as a potential therapy for CADASIL, but as of 2017 there are no clinical studies supporting its use. Donepezil, normally used for Alzheimer's Disease, was not shown not to improve executive functioning in CADASIL patients.
VLDLR-associated cerebellar hypoplasia (VLDLRCH; alternative names: dysequilibrium syndrome, DES; nonprogressive cerebellar disorder with mental retardation) is a rare autosomal recessive condition caused by a disruption of the VLDLR gene. First described as a form of cerebral palsy in the 1970s, it is associated with parental consanguinity and is found in secluded communities, with a number of cases described in Hutterite families.
Kaufman oculocerebrofacial syndrome is an autosomal recessive congenital disorder characterized by mental retardation, brachycephaly, upslanting palpebral fissures, eye abnormalities, and highly arched palate. It was characterized in 1971; eight cases had been identified as of 1995.
Young–Simpson syndrome (YSS) is a rare congenital disorder with symptoms including hypothyroidism, heart defects, facial dysmorphism, cryptorchidism in males, hypotonia, mental retardation and postnatal growth retardation.
Other symptoms include transient hypothyroidism, macular degeneration and torticollis. The condition was discovered in 1987 and the name arose from the individuals who first reported the syndrome. An individual with
YSS has been identified with having symptoms to a similar syndrome known as Ohdo Blepharophimosis syndrome, showing that it is quite difficult to diagnose the correct condition based on the symptoms present. Some doctors therefore consider these syndromes to be the same.
The mode of inheritance has had mixed findings based on studies undertaken. One study showed that the parents of an individual with YSS are unrelated and phenotypically normal, indicating a sporadic mutation, thus making it difficult to base the cause of the condition on genetic makeup alone. However, another study was done of an individual with YSS who had first cousins as parents, giving the possibility of autosomal recessive inheritance.