Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most patients can be treated non-surgically with eyeglasses, or contact lenses.
There is evidence suggesting corneal collagen cross-linking may be beneficial for patients with pellucid marginal degeneration. Research shows some promising results by combining collagen cross linking with photorefractive keratectomy, or with topography-guided transepithelial surface ablation.
Though there is no treatment for Cone dystrophy, certain supplements may help in delaying the progression of the disease.
The beta-carotenoids, lutein and zeaxanthin, have been evidenced to reduce the risk of developing age related macular degeneration (AMD), and may therefore provide similar benefits to Cone dystrophy sufferers.
Consuming omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) has been correlated with a reduced progression of early AMD, and in conjunction with low glycemic index foods, with reduced progression of advanced AMD, and may therefore delay the progression of cone dystrophy.
In early stages of keratoconus, glasses or soft contact lenses can suffice to correct for the mild astigmatism. As the condition progresses, these may no longer provide the person with a satisfactory degree of visual acuity, and most practitioners will move to manage the condition with rigid contact lenses, known as rigid, gas-permeable, (RGP) lenses. RGP lenses provide a good level of visual correction, but do not arrest progression of the condition.
In people with keratoconus, rigid contact lenses improve vision by means of tear fluid filling the gap between the irregular corneal surface and the smooth regular inner surface of the lens, thereby creating the effect of a smoother cornea. Many specialized types of contact lenses have been developed for keratoconus, and affected people may seek out both doctors specialized in conditions of the cornea, and contact lens fitters who have experience managing people with keratoconus. The irregular cone presents a challenge and the fitter will endeavor to produce a lens with the optimal contact, stability and steepness. Some trial-and-error fitting may prove necessary.
Scleral lenses are sometimes prescribed for cases of advanced or very irregular keratoconus; these lenses cover a greater proportion of the surface of the eye and hence can offer improved stability. Easier handling can find favor with people with reduced dexterity, such as the elderly.
In general, the younger the child, the greater the urgency in removing the cataract, because of the risk of amblyopia. For optimal visual development in newborns and young infants, a visually significant unilateral congenital cataract should be detected and removed before age 6 weeks, and visually significant bilateral congenital cataracts should be removed before age 10 weeks.
Some congenital cataracts are too small to affect vision, therefore no surgery or treatment will be done. If they are superficial and small, an ophthalmologist will continue to monitor them throughout a patient's life. Commonly, a patient with small congenital cataracts that do not affect vision will eventually be affected later in life; generally this will take decades to occur.
In the early stages, there are a few treatment options. Laser surgery or cryotherapy (freezing) can be used to destroy the abnormal blood vessels, thus halting progression of the disease. However, if the leaking blood vessels are clustered around the optic nerve, this treatment is not recommended as accidental damage to the nerve itself can result in permanent blindness. Although Coats' disease tends to progress to visual loss, it may stop progressing on its own, either temporarily or permanently. Cases have been documented in which the condition even reverses itself. However, once total retinal detachment occurs, sight loss is permanent in most cases. Removal of the eye (enucleation) is an option if pain or further complications arise.
Risk factors such as UVB exposure and smoking can be addressed. Although no means of preventing cataracts has been scientifically proven, wearing sunglasses that counteract ultraviolet light may slow their development. While adequate intake of antioxidants (such as vitamins A, C, and E) has been thought to protect against the risk of cataracts, clinical trials have shown no benefit from supplements; though evidence is mixed, but weakly positive, for a potential protective effect of the nutrients lutein and zeaxanthin. Statin use is somewhat associated with a lower risk of nuclear sclerotic cataracts.
Low order aberrations (hyperopia, Myopia and regular astigmatism), are correctable by eyeglasses, soft contact lenses and refractive surgery. Neither spectacles nor soft contact lenses nor routine keratorefractive surgery adequately corrects high order aberrations. Significant high order aberration usually requires a rigid gas-permeable contact lens for optimal visual rehabilitation.
Customized Wavefront-guided refractive corneal laser treatments are designed to reduce existing aberrations and to help prevent the creation of new aberrations. The wavefront map of the eye may be transferred to a Lasik system and enable the surgeon to treat the aberration. Perfect alignment of the treatment and the pupil on which the Wavefront is measured is required, which is usually achieved through iris feature detection. An efficient eye tracking system and small spot size laser is necessary for treatment . Wavefront customization of ablation increases the depth of ablation because additional corneal tissue must be ablated to compensate for the high order aberrations. Actual results with Wavefront guided LASIK showed that not only it cannot remove HOA but also the optical aberrations are increased. However, the amount of increase in aberrations are less than conventional Lasik. Corneal optical aberrations after photorefractive keratectomy with a larger ablation zone and a transition zone are less pronounced and more physiologic than those associated with first-generation (5 mm) ablations with no transition zone. An upcoming systematic review will seek to compare the safety and effectiveness of wavefront excimer laser refractive surgery with conventional excimer laser refractive surgery, and will measure differences in residual higher order aberrations between the two procedures.
Aspherical intraocular lenses (IOLs) have been used clinically to compensate for positive corneal spherical aberrations. Although Aspherical IOLs may give better contrast sensitivity, it is doubtful, whether they have a beneficial effect on distance visual acuity. Conventional (not Aspherical) IOLs give better depth of focus and better near vision. The reason for improved depth of focus in conventional lenses is linked to residual spherical aberration. The small improvement in depth of focus with the conventional IOLs enhances uncorrected near vision and contribute to reading ability.
Wavefront customized lenses can be used in eyeglasses. Based on Wavefront map of the eye and with the use of laser a lens is shaped to compensate for the aberrations of the eye and then put in the eyeglasses. Ultraviolet Laser can alter the refractive index of curtain lens materials such as epoxy polymer on a point by point basis in order to generate the desired refractive profile.
Wavefront customized contact lenses can theoretically correct HOA. The rotation and decentration reduces the predictability of this method.
There is no cure for retinitis pigmentosa, but the efficacy and safety of various prospective treatments are currently being evaluated. The efficiency of various supplements, such as Vitamin A, DHA, and Lutein, in delaying disease progression remains an unresolved, yet prospective treatment option. Clinical trials investigating optic prosthetic devices, gene therapy mechanisms, and retinal sheet transplantations are active areas of study in the partial restoration of vision in retinitis pigmentosa patients.
Studies have demonstrated the delay of rod photoreceptor degeneration by the daily intake of 15000 IU (equivalent to 4.5 mg) of vitamin A palmitate; thus, stalling disease progression in some patients. Recent investigations have shown that proper vitamin A supplementation can postpone blindness by up to 10 years (by reducing the 10% loss pa to 8.3% pa) in some patients in certain stages of the disease.
The Argus retinal prosthesis became the first approved treatment for the disease in February 2011, and is currently available in Germany, France, Italy, and the UK. Interim results on 30 patients long term trials were published in 2012. The Argus II retinal implant has also received market approval in the US. The device may help adults with RP who have lost the ability to perceive shapes and movement to be more mobile and to perform day-to-day activities. In June 2013, twelve hospitals in the US announced they would soon accept consultation for patients with RP in preparation for the launch of Argus II later that year. The Alpha-IMS is a subretinal implant involving the surgical implantation of a small image-recording chip beneath the optic fovea. Measures of visual improvements from Alpha-IMS studies require the demonstration of the device's safety before proceeding with clinical trials and granting market approval.
The goal of gene therapy studies is to virally supplement retinal cells expressing mutant genes associated with the retinitis pigmentosa phenotype with healthy forms of the gene; thus, allowing the repair and proper functioning of retinal photoreceptor cells in response to the instructions associated with the inserted healthy gene. Clinical trials investigating the insertion of the healthy RPE65 gene in retinas expressing the LCA2 retinitis pigmentosa phenotype measured modest improvements in vision; however, the degradation of retinal photoreceptors continued at the disease-related rate. Likely, gene therapy may preserve remaining healthy retinal cells while failing to repair the earlier accumulation of damage in already diseased photoreceptor cells. Response to gene therapy would theoretically benefit young patients exhibiting the shortest progression of photoreceptor decline; thus, correlating to a higher possibility of cell rescue via the healthy inserted gene.
Treatment options include contact lenses, intrastromal corneal ring segments, corneal collagen cross-linking, or corneal transplant.
When cross-linking is performed only after the cornea becomes distorted, vision remains blurry even though the disease is stabilised. As a result, combining corneal collagen cross-linking with LASIK ('LASIK Xtra') aims to strengthen the cornea at the point of surgery and may be useful in cases where a very thin cornea is expected after the LASIK procedure. This would include cases of high spectacle power and people with thin corneas before surgery. Definitive evidence that the procedure can reduce the risk of corneal ectasia will only become available a number of years later as corneal ectasia, if it happens, usually occurs in the late post-operative period. Some study show that combining LASIK with cross-linking adds refractive stability to hyperopic treatments and may also do the same for very high myopic treatments.
In 2016, the FDA approved the KXL system and two photoenhancers for the treatment of corneal ectasia following refractive surgery.
Cataract removal can be performed at any stage and no longer requires ripening of the lens. Surgery is usually 'outpatient' and performed using local anesthesia. About 9 of 10 patients can achieve a corrected vision of 20/40 or better after surgery.
Several recent evaluations found that cataract surgery can meet expectations only when significant functional impairment due to cataracts exists before surgery. Visual function estimates such as VF-14 have been found to give more realistic estimates than visual acuity testing alone. In some developed countries, a trend to overuse cataract surgery has been noted, which may lead to disappointing results.
Phacoemulsification is the most widely used cataract surgery in the developed world. This procedure uses ultrasonic energy to emulsify the cataract lens. Phacoemulsification typically comprises six steps:
- Anaesthetic – The eye is numbed with either a subtenon injection around the eye (see: retrobulbar block) or topical anesthetic eye drops. The former also provides paralysis of the eye muscles.
- Corneal incision – Two cuts are made at the margin of the clear cornea to allow insertion of instruments into the eye.
- Capsulorhexis – A needle or small pair of forceps is used to create a circular hole in the capsule in which the lens sits.
- Phacoemulsification – A handheld ultrasonic probe is used to break up and emulsify the lens into liquid using the energy of ultrasound waves. The resulting 'emulsion' is sucked away.
- Irrigation and aspiration – The cortex, which is the soft outer layer of the cataract, is aspirated or sucked away. Fluid removed is continually replaced with a saline solution to prevent collapse of the structure of the anterior chamber (the front part of the eye).
- Lens insertion – A plastic, foldable lens is inserted into the capsular bag that formerly contained the natural lens. Some surgeons also inject an antibiotic into the eye to reduce the risk of infection. The final step is to inject salt water into the corneal wounds to cause the area to swell and seal the incision.
Extracapsular cataract extraction (ECCE) consists of removing the lens manually, but leaving the majority of the capsule intact. The lens is expressed through a 10- to 12-mm incision which is closed with sutures at the end of surgery. ECCE is less frequently performed than phacoemulsification, but can be useful when dealing with very hard cataracts or other situations where emulsification is problematic. Manual small incision cataract surgery (MSICS) has evolved from ECCE. In MSICS, the lens is removed through a self-sealing scleral tunnel wound in the sclera which, ideally, is watertight and does not require suturing. Although "small", the incision is still markedly larger than the portal in phacoemulsion. This surgery is increasingly popular in the developing world where access to phacoemulsification is still limited.
Intracapsular cataract extraction (ICCE) is rarely performed. The lens and surrounding capsule are removed in one piece through a large incision while pressure is applied to the vitreous membrane. The surgery has a high rate of complications.
The progressive nature of and lack of a definitive cure for retinitis pigmentosa contribute to the inevitably discouraging outlook for patients with this disease. While complete blindness is rare, the patient's visual acuity and visual field will continue to decline as initial rod photoreceptor and later cone photoreceptor degradation proceeds. Possible treatments remain in the research and clinical trial stages; however, treatment studies concerning visual restoration in retinitis pigmentosa prove promising for the future.
Studies indicate that children carrying the disease genotype benefit from presymptomatic counseling in order to prepare for the physical and social implications associated with progressive vision loss. While the psychological prognosis can be slightly alleviated with active counseling the physical implications and progression of the disease depend largely on the age of initial symptom manifestation and the rate of photoreceptor degradation, rather than access to prospective treatments. Corrective visual aids and personalized vision therapy provided by Low Vision Specialists may help patients correct slight disturbances in visual acuity and optimize their remaining visual field. Support groups, vision insurance, and lifestyle therapy are additional useful tools for those managing progressive visual decline.
The best treatment for light sensitivity is to address the underlying cause. Once the triggering factor is treated, photophobia disappears in many but not all cases.
People with photophobia will avert their eyes from direct light, such as sunlight and room lights. They may seek the shelter of a dark room. They may wear sunglasses designed to filter peripheral light and wide-brimmed sun hats.
Wearing sunglasses indoors can make symptoms worse over time as it will dark-adapt the retina which aggravates sensitivity to light. Indoor photophobia symptoms may be relieved with the use of precision tinted lenses which block the green-to-blue end of the light spectrum without blurring or impeding vision.
A paper by Stringham and Hammond, published in the "Journal of Food Science", reviews studies of effects of consuming Lutein and Zeaxanthin on visual performance, and notes a decrease in sensitivity to glare.
There is currently no defined treatment to ameliorate the muscle weakness of CPEO. Treatments used to treat other pathologies causing ophthalmoplegia has not been shown to be effective.
Experimental treatment with tetracycline has been used to improve ocular motility in one patient. Coenzyme Q has also been used to treat this condition. However, most neuro-ophthalmologists do not ascribe to any treatment.
Ptosis associated with CPEO may be corrected with surgery to raise the lids, however due to weakness of the orbicularis oculi muscles, care must be taken not to raise the lids in excess causing an inability to close the lids. This results in an exposure keratopathy. Therefore, rarely should lid surgery be performed and only by a neuro-ophthalmologist familiar with the disease.
The most common strabismus finding is large angle exotropia which can be treated by maximal bilateral eye surgery, but due to the progressive nature of the disease, strabismus may recur. Those that have diplopia as a result of asymmetric ophthalmoplegia may be corrected with prisms or with surgery to create a better alignment of the eyes.
There is no medical treatment for either syndrome but there are some recommendations that can help with prevention or early identification of some of the problems. Children with either syndrome should have their hearing tested, and adults should be aware that the hearing loss may not develop until the adult years. Yearly visits to an ophthalmologist or other eye care professional who has been informed of the diagnosis of Stickler or Marshall syndrome is important for all affected individuals. Children should have the opportunity to have myopia corrected as early as possible, and treatment for cataracts or detached retinas may be more effective with early identification. Support for the joints is especially important during sports, and some recommend that contact sports should be avoided by those who have very loose joints.
Astigmatism may be corrected with eyeglasses, contact lenses, or refractive surgery. Various considerations involving eye health, refractive status, and lifestyle determine whether one option may be better than another. In those with keratoconus, certain contact lenses often enable patients to achieve better visual acuity than eyeglasses. Once only available in a rigid, gas-permeable form, toric lenses are now available also as soft lenses.
Laser eye surgery (LASIK and PRK) is successful in treating astigmatism.
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
There is no known curative treatment presently. Hearing aids and cataract surgery may be of use. Control of seizures, heart failure and treatment of infection is important. Tube feeding may be needed.
Uveitis is typically treated with glucocorticoid steroids, either as topical eye drops (prednisolone acetate) or as oral therapy. Prior to the administration of corticosteroids, corneal ulcers must be ruled out. This is typically done using a fluoresence dye test. In addition to corticosteroids, topical cycloplegics, such as atropine or homatropine, may be used. Successful treatment of active uveitis increases T-regulatory cells in the eye, which likely contributes to disease regression.
In some cases an injection of posterior subtenon triamcinolone acetate may also be given to reduce the swelling of the eye.
Antimetabolite medications, such as methotrexate are often used for recalcitrant or more aggressive cases of uveitis. Experimental treatments with Infliximab or other anti-TNF infusions may prove helpful.
The anti-diabetic drug metformin is reported to inhibit the process that causes the inflammation in uveitis.
In the case of herpetic uveitis, anti-viral medications, such as valaciclovir or aciclovir, may be administered to treat the causative viral infection.
Photophobia may also affect patients' socioeconomic status by limiting their career choices, since many workplaces require bright lights for safety or to accommodate the work being done. Sufferers may be shut out of a wide range of both skilled and unskilled jobs, such as in warehouses, offices, workshops, classrooms, supermarkets and storage spaces. Some photophobes are only able to work night shifts, which reduces their prospects for finding work.
Treatment options include contact lenses and intrastromal corneal ring segments for correcting refractive errors caused by irregular corneal surface, corneal collagen cross-linking to strengthen a weak and ectatic cornea, or corneal transplant for advanced cases.
The prognosis is generally good for those who receive prompt diagnosis and treatment, but serious complication including cataracts, glaucoma, band keratopathy, macular edema and permanent vision loss may result if left untreated. The type of uveitis, as well as its severity, duration, and responsiveness to treatment or any associated illnesses, all factor into the outlook.
The standard treatment is chenodeoxycholic acid (CDCA) replacement therapy. Serum cholesterol levels are also followed. If hypercholesterolemia is not controlled with CDCA, an HMG-CoA reductase inhibitor ("statins" such as simvastatin) can also be used.