Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
No specific treatment for CADASIL is available. While most treatments for CADASIL patients' symptoms – including migraine and stroke – are similar to those without CADASIL, these treatments are almost exclusively empiric, as data regarding their benefit to CADASIL patients is limited. Antiplatelet agents such as aspirin, dipyridamole, or clopidogrel might help prevent strokes; however, anticoagulation may be inadvisable given the propensity for microhemorrhages. Control of high blood pressure is particularly important in CADASIL patients. Short-term use of atorvastatin, a statin-type cholesterol-lowering medication, has not been shown to be beneficial in CADASIL patients' cerebral hemodynamic parameters, although treatment of comorbidities such as high cholesterol is recommended. Stopping oral contraceptive pills may be recommended. Some authors advise against the use of triptan medications for migraine treatment, given their vasoconstrictive effects, although this sentiment is not universal. As with other individuals, people with CADASIL should be encouraged to quit smoking.
In one small study, around 1/3 of patients with CADASIL were found to have cerebral microhemorrhages (tiny areas of old blood) on MRI.
L-arginine, a naturally occurring amino acid, has been proposed as a potential therapy for CADASIL, but as of 2017 there are no clinical studies supporting its use. Donepezil, normally used for Alzheimer's Disease, was not shown not to improve executive functioning in CADASIL patients.
Currently, there are no medications that have been approved specifically for prevention or treatment of vascular dementia. The use of medications for treatment of Alzheimer's dementia, such as cholinesterase inhibitors and memantine, has shown small improvement of cognition in vascular dementia. This is most likely due to the drugs' actions on co-existing AD-related pathology. Multiple studies found a small benefit in VaD treatment with: memantine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist; cholinesterase inhibitors galantamine, donepezil, rivastigmine; and ginkgo biloba extract.
The general management of dementia includes referral to community services, aid with judgment and decision-making regarding legal and ethical issues (e.g., driving, capacity, advance directives), and consideration of caregiver stress.
Behavioral and affective symptoms deserve special consideration in this patient group. These problems tend to be resistant to conventional psychopharmacological treatment and often lead to hospital admission and placement in permanent care.
Binswanger's disease has no cure and has been shown to be the most severe impairment of all of the vascular dementias. The best way to manage the vascular risk factors that contribute to poor perfusion in the brain is to treat the cause, such as chronic hypertension or diabetes. It has been shown that current Alzheimer’s medication, donepezil (trade name Aricept), may help Binswanger’s Disease patients as well . Donepezil increases the acetylcholine in the brain through a choline esterase inhibitor which deactivates the enzyme that breaks down acetylcholine. Alzheimer as well as Binswanger patients have low levels of acetylcholine and this helps to restore the normal levels of neurotransmitters in the brain. This drug may improve memory, awareness, and the ability to function. If no medical interception of the disease is performed then the disease will continue to worsen as the patient ages due to the continuing atrophy of the white matter from whatever was its original cause.
Early detection and accurate diagnosis are important, as vascular dementia is at least partially preventable. Ischemic changes in the brain are irreversible, but the patient with vascular dementia can demonstrate periods of stability or even mild improvement.
Since stroke is an essential part of vascular dementia, the goal is to prevent new strokes. This is attempted through reduction of stroke risk factors, such as high blood pressure, high blood lipid levels, atrial fibrillation, or diabetes mellitus. Meta-analyses have found that medications for high blood pressure are effective at prevention of pre-stroke dementia, which means that high blood pressure treatment should be started early. These medications include angiotensin converting enzyme inhibitors, diuretics, calcium channel blockers, sympathetic nerve inhibitors, angiotensin II receptor antagonists or adrenergic antagonists. Elevated lipid levels, including HDL, were found to increase risk of vascular dementia. However, four large recent reviews showed that therapy with statin drugs was ineffective in treatment or prevention of this dementia. Aspirin is a medication that is commonly prescribed for prevention of strokes and heart attacks; it is also frequently given to patients with dementia. However, its efficacy in slowing progression of dementia or improving cognition has not been supported by studies. Smoking cessation and Mediterranean diet have not been found to help patients with cognitive impairment, however physical activity was consistently the most effective method of preventing cognitive decline.
There is currently no treatment or cure for CARASIL. Most frequently, a combination of supportive care and medications to prevent the occurrence of stroke are recommended.
Treatment for cerebrovascular disease may include medication, lifestyle changes and/or surgery, depending on the cause.
Examples of medications are:
- antiplatelets (aspirin, clopidogrel)
- blood thinners (heparin, warfarin)
- antihypertensives (ACE inhibitors, beta blockers)
- anti-diabetic medications.
Surgical procedures include:
- endovascular surgery and vascular surgery (for future stroke prevention).
Aspirin reduces the overall risk of recurrence by 13% with greater benefit early on. Definitive therapy within the first few hours is aimed at removing the blockage by breaking the clot down (thrombolysis), or by removing it mechanically (thrombectomy). The philosophical premise underlying the importance of rapid stroke intervention was summed up as "Time is Brain!" in the early 1990s. Years later, that same idea, that rapid cerebral blood flow restoration results in fewer brain cells dying, has been proved and quantified.
Tight blood sugar control in the first few hours does not improve outcomes and may cause harm. High blood pressure is also not typically lowered as this has not been found to be helpful. Cerebrolysin, a mix of pig brain tissue used to treat acute ischemic stroke in many Asian and European countries, does not improve outcomes and may increase the risk of severe adverse events.
Treatment Grinker's myelinopathy is still in the experimental stages and is very individualized. Some suggested treatments are early supportive care, rehabilitation therapies, oxygen treatments, and bed rest. Some episodes of Grinker's myelinopathy that progress to comas have no known treatment to reverse the course.
Early supportive care is the anchor of treatment during the first two weeks. Rehabilitation is an important part of the care process and it is important to start the rehabilitation as soon as the patient is able to participate in therapy. Types of therapy include: physical therapy, occupational therapy, speech therapy, and respiratory therapy. This therapies are used to assess the patient's functional status and to develop treatment goals. Each goal is individualized to target the specific neurological impairments to improve the patient's functional abilities.
One way to prevent the likelihood of Grinker's myelinopathy occurring is standard or hyperbaric oxygen after carbon monoxide poisoning. The hyperbaric oxygen treatment eliminates carbon dioxide from the brain, while the standard oxygen treatment normalizes carboxyhemoglobin levels. Another preventative measure one can take is to be on bed rest and abstain from stressful and strenuous procedures for the first 10 days after an extended hypoxic event. Expectation and recognition will also lead to an earlier and more accurate and appropriate use of health care services.
Keeping blood pressure below 140/90 mmHg is recommended. Anticoagulation can prevent recurrent ischemic strokes. Among people with nonvalvular atrial fibrillation, anticoagulation can reduce stroke by 60% while antiplatelet agents can reduce stroke by 20%. However, a recent meta-analysis suggests harm from anticoagulation started early after an embolic stroke. Stroke prevention treatment for atrial fibrillation is determined according to the CHA2DS2–VASc score. The most widely used anticoagulant to prevent thromboembolic stroke in patients with nonvalvular atrial fibrillation is the oral agent warfarin while a number of newer agents including dabigatran are alternatives which do not require prothrombin time monitoring.
Anticoagulants, when used following stroke, should not be stopped for dental procedures.
If studies show carotid artery stenosis, and the person has a degree of residual function on the affected side, carotid endarterectomy (surgical removal of the stenosis) may decrease the risk of recurrence if performed rapidly after stroke.
An antiplatelet, such as aspirin, is started for secondary prevention of stroke after most TIAs. An exception is TIAs due to blood clots originating from the heart, in which case anticoagulants are generally recommended. After TIA or minor stroke, aspirin therapy has been shown to reduce the short-term risk of recurrent stroke by 60-70%, and the long-term risk of stroke by 13%.
The typical therapy may include aspirin alone, a combination of aspirin plus extended-release dipyridamole, or clopidogrel alone. Clopidogrel and aspirin have similar efficacies and side effect profiles. Clopidogrel is more expensive and has a slightly decreased risk of GI bleed. There is some evidence that giving both aspirin and clopidogrel within 24 hours of a TIA or minor stroke is more effective than aspirin alone. Another antiplatelet, ticlopidine, is rarely used due to increased side effects.
Typically, tissue plasminogen activator may be administered within three to four-and-a-half hours of stroke onset if the patient is without contraindications (i.e. a bleeding diathesis such as recent major surgery or cancer with brain metastases). High dose aspirin can be given within 48 hours. For long term prevention of recurrence, medical regimens are typically aimed towards correcting the underlying risk factors for lacunar infarcts such as hypertension, diabetes mellitus and cigarette smoking. Anticoagulants such as heparin and warfarin have shown no benefit over aspirin with regards to five year survival.
Patients who suffer lacunar strokes have a greater chance of surviving beyond thirty days (96%) than those with other types of stroke (85%), and better survival beyond a year (87% versus 65-70%). Between 70% and 80% are functionally independent at 1 year, compared with fewer than 50% otherwise.
Occupational Therapy and Physical Therapy interventions are used in the rehabilitation of lacunar stroke. A physiotherapy program will improve joint range of motion of the paretic limb using passive range of motion exercises. When increases in activity are tolerated, and stability improvements are made, patients will progress from rolling to side-lying, to standing (with progressions to prone, quadruped, bridging, long-sitting and kneeling for example) and learn to transfer safely (from their bed to a chair or from a wheel chair to a car for example). Assistance and ambulation aids are used as required as the patient begins walking and lessened as function increases. Furthermore, splints and braces can be used to support limbs and joints to prevent complications such as contractures and spasticity. The rehabilitation healthcare team should also educate the patient and their family on common stroke symptoms and how to manage an onset of stroke. Continuing follow-up with a physician is essential so that the physician may monitor medication dosage and risk factors.
The treatment of PRES dependent on its cause. Anti-epileptic medication may also be appropriate.
There are several interventions that are often used to help prevent the recurrence of a watershed stroke; namely, nutritional interventions, as well as antiplatelet, anticoagulant, and statin drug use. Nutritional interventions, including increased consumption of certain amino acids, antioxidants, B-group vitamins, and zinc, have been shown to increase the recovery of neurocognitive function after a stroke. Antiplatelet drugs, such as aspirin, as well as anticoagulants, are used to help prevent blood clots and therefore embolisms, which can cause watershed strokes. Statin drugs are also used to control hyperlipidemia, another risk factor for watershed stroke.
Anticoagulants may be started if the TIA is thought to be attributable to atrial fibrillation. Atrial fibrillation is an abnormal heart rhythm that may cause the formation of blood clots that can travel to the brain, resulting in TIAs or ischemic strokes. Atrial fibrillation increases stroke risk by five times, is thought to cause 10-12% of all ischemic strokes in the US. Anticoagulant therapy can decrease the relative risk of ischemic stroke in those with atrial fibrillation by 67% Warfarin is a common anticoagulant used, but direct acting oral anticoagulants (DOACs), such as apixaban, have been shown to be equally effective while also conferring a lower risk of bleeding. Generally, anticoagulants and antiplatelets are not used in combination, as they result in increased bleeding risk without a decrease in stroke risk. However, combined antiplatelet and anticoagulant therapy may be warranted if the patient has symptomatic coronary artery disease in addition to atrial fibrillation.
Sometimes, myocardial infarction (“heart attack”) may lead to the formation of a blood clot in one of the chambers of the heart. If this is thought to be the cause of the TIA, people may be temporarily treated with warfarin or other anticoagulant to decrease the risk of future stroke.
With many different types of leukodystrophies and causes, treatment therapies vary for each type. Many studies and clinical trials are in progress to find treatment and therapies for each of the different leukodystrophies. Stem cell transplants and gene therapy appear to be the most promising in treating all leukodystrophies providing it is done as early as possible.
For hypomyelinating leukodystrophies, therapeutic research into cell-based therapies appears promising. Oligodendrocyte precursor cells and neural stem cells have been transplanted successfully and have shown to be healthy a year later. Fractional anisotropy and radial diffusivity maps showed possible myelination in the region of the transplant. Induced pluripotent stem cells, oligodendrocyte precursor cells, gene correction, and transplantation to promote the maturation, survival, and myelination of oligodendrocytes seem to be the primary routes for possible treatments.
For three types of leukodystrophies (X-linked adrenoleukodystrophy (X-ALD), metachromatic leukodystrophy (MLD) and Krabbe Disease (globoid cell leukodystrophy - GLD), gene therapy using autologous hematopoietic stem cells to transfer the disease gene with lentiviral vectors have shown to be successful and are currently being used in clinical trials for X-ALD and MLD. The progression of X-ALD has shown to be disrupted with hematopoietic stem cell gene therapy but the exact reason why demyelination stops and the amount of stem cells needed is unclear. While there is an accumulation of very long chain fatty acids in the brain, it does not seem to be the reason behind the disease as gene therapy does not correct it.
Adeno-associated vectors have also been used in intracerebral injections to treat MLD. In some patients with MLD, their IQ increased, nerve conduction improved, their MRIs appeared stable, and had normal enzyme levels. Although the greater majority of patients seem to improve after the transplant, some do not respond well to treatment, which may cause devastating outcomes. For those leukodystrophies that result from a deficiency of lysozyme enzymes, such as Krabbes disease, enzyme replacement therapy seems hopeful, however, this proves difficult as the blood-brain barrier severely limits what can pass through into the central nervous system. Due to this obstacle, most research and clinical trials are turning to allogeneic hematopoietic stem cell transplantation.
CADASIL or CADASIL syndrome, involving cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, is the most common form of hereditary stroke disorder, and is thought to be caused by mutations of the "Notch 3" gene on chromosome 19. The disease belongs to a family of disorders called the leukodystrophies. The most common clinical manifestations are migraine headaches and transient ischemic attacks or strokes, which usually occur between 40 and 50 years of age, although MRI is able to detect signs of the disease years prior to clinical manifestation of disease.
Endovascular interventions, including surgical revascularization, can increase blood flow in the area of the stroke, thereby decreasing the likelihood that insufficient blood flow to the watershed regions of the brain will result in subsequent strokes. Neuroscientists are currently researching stem cell transplantation therapies to improve recovery of cebreral tissue in affected areas of the brain post-stroke. Should this intervention be proven effective, it will greatly increase the number of neurons in the brain that can recover from a stroke.
When someone presents with an ischemic event, treatment of the underlying cause is critical for prevention of further episodes.
Anticoagulation with warfarin or heparin may be used if the patient has atrial fibrillation.
Operative procedures such as carotid endarterectomy and carotid stenting may be performed if the patient has a significant amount of plaque in the carotid arteries associated with the local ischemic events.
Alteplase (tpa) is an effective medication for acute ischemic stroke. When given within 3 hours, treatment with tpa significantly improves the probability of a favourable outcome versus treatment with placebo.
The outcome of brain ischemia is influenced by the quality of subsequent supportive care. Systemic blood pressure (or slightly above) should be maintained so that cerebral blood flow is restored. Also, hypoxaemia and hypercapnia should be avoided. Seizures can induce more damage; accordingly, anticonvulsants should be prescribed and should a seizure occur, aggressive treatment should be undertaken. Hyperglycaemia should also be avoided during brain ischemia.
Preventive measures that can be taken to avoid sustaining a silent stroke are the same as for stroke. Smoking cessation is the most immediate step that can be taken, with the effective management of hypertension the major medically treatable factor.
There are no treatments, only precautions which can be taken, mainly to reduce trauma to the head and avoiding physiological stress. Melatonin has been shown to provide cytoprotective traits to glial cells exposed to stressors such as excitotoxicity and oxidative stress. These stressors would be detrimental to cells with a genetically reduced activity of protein eIF2B. However, research connecting these ideas have not been conducted yet.
Ergotamine and dihydroergotamine are older medications still prescribed for migraines, the latter in nasal spray and injectable forms. They appear equally effective to the triptans, are less expensive, and experience adverse effects that typically are benign. In the most severe cases, such as those with status migrainosus, they appear to be the most effective treatment option.
Intravenous metoclopramide or intranasal lidocaine are other potential options. Metoclopramide is the recommended treatment for those who present to the emergency department. Haloperidol may also be useful in this group. A single dose of intravenous dexamethasone, when added to standard treatment of a migraine attack, is associated with a 26% decrease in headache recurrence in the following 72 hours. Spinal manipulation for treating an ongoing migraine headache is not supported by evidence. It is recommended that opioids and barbiturates not be used due to questionable efficacy and the risk of rebound headache.
In last decade, similar to myocardial infarction treatment, thrombolytic drugs were introduced in the therapy of cerebral infarction. The use of intravenous rtPA therapy can be advocated in patients who arrive to stroke unit and can be fully evaluated within 3 h of the onset.
If cerebral infarction is caused by a thrombus occluding blood flow to an artery supplying the brain, definitive therapy is aimed at removing the blockage by breaking the clot down (thrombolysis), or by removing it mechanically (thrombectomy). The more rapidly blood flow is restored to the brain, the fewer brain cells die. In increasing numbers of primary stroke centers, pharmacologic thrombolysis with the drug tissue plasminogen activator (tPA), is used to dissolve the clot and unblock the artery.
Another intervention for acute cerebral ischaemia is removal of the offending thrombus directly. This is accomplished by inserting a catheter into the femoral artery, directing it into the cerebral circulation, and deploying a corkscrew-like device to ensnare the clot, which is then withdrawn from the body. Mechanical embolectomy devices have been demonstrated effective at restoring blood flow in patients who were unable to receive thrombolytic drugs or for whom the drugs were ineffective, though no differences have been found between newer and older versions of the devices. The devices have only been tested on patients treated with mechanical clot embolectomy within eight hours of the onset of symptoms.
Angioplasty and stenting have begun to be looked at as possible viable options in treatment of acute cerebral ischaemia. In a systematic review of six uncontrolled, single-center trials, involving a total of 300 patients, of intra-cranial stenting in symptomatic intracranial arterial stenosis, the rate of technical success (reduction to stenosis of <50%) ranged from 90-98%, and the rate of major peri-procedural complications ranged from 4-10%. The rates of restenosis and/or stroke following the treatment were also favorable. This data suggests that a large, randomized controlled trial is needed to more completely evaluate the possible therapeutic advantage of this treatment.
If studies show carotid stenosis, and the patient has residual function in the affected side, carotid endarterectomy (surgical removal of the stenosis) may decrease the risk of recurrence if performed rapidly after cerebral infarction. Carotid endarterectomy is also indicated to decrease the risk of cerebral infarction for symptomatic carotid stenosis (>70 to 80% reduction in diameter).
In tissue losses that are not immediately fatal, the best course of action is to make every effort to restore impairments through physical therapy, cognitive therapy, occupational therapy, speech therapy and exercise.
Prognostics factors:
Lower Glasgow coma scale score, higher pulse rate, higher respiratory rate and lower arterial oxygen saturation level is prognostic features of in-hospital mortality rate in acute ischemic stroke.