Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Therapy involves both preventive measures and treatment of specific bleeding episodes.
- Dental hygiene lessens gingival bleeding
- Avoidance of antiplatelet agents such as aspirin and other anti-inflammatory drugs (NSAIDs) such as ibuprofen and naproxen, and anticoagulants
- Iron or folate supplementation may be necessary if excessive or prolonged bleeding has caused anemia
- Hepatitis B vaccine
- Antifibrinolytic drugs such as tranexamic acid or ε-aminocaproic acid (Amicar)
- Desmopressin (DDAVP) does not normalize the bleeding time in Glanzmann's thrombasthenia but anecdotally improves hemostasis
- Hormonal contraceptives to control excessive menstrual bleeding
- Topical agents such as gelfoam, fibrin sealants, polyethylene glycol polymers, custom dental splints
- Platelet transfusions (only if bleeding is severe; risk of platelet alloimmunization)
- Recombinant factor VIIa, AryoSeven or NovoSeven FDA approved this drug for the treatment of the disease on July 2014.
- Hematopoietic stem cell transplantation (HSCT) for severe recurrent hemorrhages
The cysts can be removed via , though conventional cyst excision techniques have proven impractical, and a specialized regimen is required.
In terms of treatment/management, bleeding events can be controlled by platelet transfusion.
Most heterozygotes, with few exceptions, do not have a bleeding diathesis. BSS presents as a bleeding disorder due to the inability of platelets to bind and aggregate at sites of vascular endothelial injury. In the event of an individual with mucosal bleeding tranexamic acid can be given.
The affected individual may need to avoid contact sports and medications such as aspirin, which can increase the possibility of bleeding. A potential complication is the possibility of the individual producing antiplatelet antibodies
Although patients can receive intensive antibiotherapy and even granulocyte transfusions from healthy donors, the only current curative therapy is the hematopoietic stem cell transplant. However, progress has been made in gene therapy, an active area of research. Both foamyviral and lentiviral vectors expressing the human ITGB2 gene under the control of different promoters have been developed and have been tested so far in preclinical LAD-I models (such as CD18-deficient mice and canine leukocyte adhesion deficiency-affected dogs).
Regular administration of exogenous granulocyte colony-stimulating factor (filgrastim) clinically improves neutrophil counts and immune function and is the mainstay of therapy, although this may increase risk for myelofibrosis and acute myeloid leukemia in the long term.
Over 90% of SCN responds to treatment with granulocyte colony-stimulating factor (filgrastim), which has significantly improved survival.
The only treatment for this disorder is surgery to reduce the compression of cranial nerves and spinal cord. However, bone regrowth is common since the surgical procedure can be technically difficult. Genetic counseling is offered to the families of the people with this disorder.
Management of AOS is largely symptomatic and aimed at treating the various congenital anomalies present in the individual. When the scalp and/or cranial bone defects are severe, early surgical intervention with grafting is indicated.
Most patients with hyper IgE syndrome are treated with long-term antibiotic therapy to prevent staphylococcal infections. Good skin care is also important in patients with hyper IgE syndrome. High-dose intravenous gamma-globulin has also been suggested for the treatment of severe eczema in patients with HIES and atopic dermatitis.
Treatment for autosomal dominant porencephaly type I is based on the symptoms that an individual is experiencing - for example, treatment of seizures with anticonvulsants. It is particularly important for individuals with this disorder and hypertension to control their blood pressure, as they are at higher risk of stroke. Other stroke prevention treatments include avoiding anticoagulants, smoking, and situations that may lead to head trauma.
The treatment of genetic disorders is an ongoing battle with over 1800 gene therapy clinical trials having been completed, are ongoing, or have been approved worldwide. Despite this, most treatment options revolve around treating the symptoms of the disorders in an attempt to improve patient quality of life.
Gene therapy refers to a form of treatment where a healthy gene is introduced to a patient. This should alleviate the defect caused by a faulty gene or slow the progression of disease. A major obstacle has been the delivery of genes to the appropriate cell, tissue, and organ affected by the disorder. How does one introduce a gene into the potentially trillions of cells which carry the defective copy? This question has been the roadblock between understanding the genetic disorder and correcting the genetic disorder.
Usually, a common form of treatment for the condition is a type of hand cream which moisturises the hard skin. However, currently the condition is incurable.
There is no cure for this syndrome. Treatment is supportive and symptomatic. All children with Mowat–Wilson syndrome required early intervention with speech therapy, occupational therapy and physical therapy.
The most common treatment for SCID is bone marrow transplantation, which has been successful using either a matched related or unrelated donor, or a half-matched donor, who would be either parent. The half-matched type of transplant is called haploidentical. Haploidentical bone marrow transplants require the donor marrow to be depleted of all mature T cells to avoid the occurrence of graft-versus-host disease (GVHD). Consequently, a functional immune system takes longer to develop in a patient who receives a haploidentical bone marrow transplant compared to a patient receiving a matched transplant. David Vetter, the original "bubble boy", had one of the first transplantations, but eventually died because of an unscreened virus, Epstein-Barr (tests were not available at the time), in his newly transplanted bone marrow from his sister, an unmatched bone marrow donor. Today, transplants done in the first three months of life have a high success rate. Physicians have also had some success with "in utero" transplants done before the child is born and also by using cord blood which is rich in stem cells. "In utero" transplants allow for the fetus to develop a functional immune system in the sterile environment of the uterus; however complications such as GVHD would be difficult to detect or treat if they were to occur.
More recently gene therapy has been attempted as an alternative to the bone marrow transplant. Transduction of the missing gene to hematopoietic stem cells using viral vectors is being tested in ADA SCID and X-linked SCID. In 1990, four-year-old Ashanthi DeSilva became the first patient to undergo successful gene therapy. Researchers collected samples of DeSilva's blood, isolated some of her white blood cells, and used a retrovirus to insert a healthy adenosine deaminase (ADA) gene into them. These cells were then injected back into her body, and began to express a normal enzyme. This, augmented by weekly injections of ADA, corrected her deficiency. However, the concurrent treatment of ADA injections may impair the success of gene therapy, since transduced cells will have no selective advantage to proliferate if untransduced cells can survive in the presence of the injected ADA.
In 2000, a gene therapy "success" resulted in SCID patients with a functional immune system. These trials were stopped when it was discovered that two of ten patients in one trial had developed leukemia resulting from the insertion of the gene-carrying retrovirus near an oncogene. In 2007, four of the ten patients have developed leukemias. Work aimed at improving gene therapy is now focusing on modifying the viral vector to reduce the likelihood of oncogenesis and using zinc-finger nucleases to more specifically target gene insertion. No leukemia cases have yet been seen in trials of ADA-SCID, which does not involve the "gamma c" gene that may be oncogenic when expressed by a retrovirus.
Trial treatments of SCID have been gene therapy's first success; since 1999, gene therapy has restored the immune systems of at least 17 children with two forms (ADA-SCID and X-SCID) of the disorder.
There are also some non-curative methods for treating SCID. Reverse isolation involves the use of laminar air flow and mechanical barriers (to avoid physical contact with others) to isolate the patient from any harmful pathogens present in the external environment. A non-curative treatment for patients with ADA-SCID is enzyme replacement therapy, in which the patient is injected with polyethyleneglycol-coupled adenosine deaminase (PEG-ADA) which metabolizes the toxic substrates of the ADA enzyme and prevents their accumulation. Treatment with PEG-ADA may be used to restore T cell function in the short term, enough to clear any existing infections before proceeding with curative treatment such as a bone marrow transplant.
The treatment of branchio-oto-renal syndrome is done per each affected area (or organ). For example, a person with hearing problems should have appropriate supports and prompt attention for any inflammation of the ear.
A specialist should observe any kidney problems. Surgical repair may be needed depending on the degree of a defect or problem, whether a transplant or dialysis is needed.
A 2009 study reported results from 36 children who had received a stem cell transplant. At the time of follow-up (median time 62 months), 75% of the children were still alive.
There is currently no cure for the disease but treatments to help the symptoms are available.
Treatment:wide excision taking 8mm normal tissue as this is locally malignant. For recurrence radiotherapy is given
Not all genetic disorders directly result in death, however there are no known cures for genetic disorders. Many genetic disorders affect stages of development such as Down syndrome. While others result in purely physical symptoms such as muscular dystrophy. Other disorders, such as Huntington's disease show no signs until adulthood. During the active time of a genetic disorder, patients mostly rely on maintaining or slowing the degradation of quality of life and maintain patient autonomy. This includes physical therapy, pain management, and may include a selection of alternative medicine programs.
Treatment is palliative, not curative (as of 2009).
Treatment options for lower limb weakness such as foot drop can be through the use of Ankle Foot Orthoses (AFOs) which can be designed or selected by an Orthotist based upon clinical need of the individual. Sometimes tuning of rigid AFOs can enhance knee stability.
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
Preventive and restorative dental care is very important as well as considerations for esthetic issues since the crown are yellow from exposure of dentin due to enamel loss. The main objectives of treatment is pain relief, preserving patient's remaining dentition, and to treat and preserve the patient's occlusal vertical height.
Many factors are to be considered to decide on treatment options such as the classification and severity of AI, the patient's social history, clinical findings etc. There are many classifications of AI but the general management of this condition is similar.
Full-coverage crowns are sometimes being used to compensate for the abraded enamel in adults, tackling the sensitivity the patient experiences. Usually stainless steel crowns are used in children which may be replaced by porcelain once they reach adulthood. These aid with maintaining occlusal vertical dimension.
Aesthetics may be addressed via placement of composite or porcelain veneers, depending on patient factors eg age. If the patient has primary or mixed dentition, lab-made composite veneers may be provided temporarily, to be replaced by permanent porcelain veneers once the patient has stabilized permanent dentition. The patient's oral hygiene and diet should be controlled as well as they play a factor in the success of retaining future restorations.
In the worst-case scenario, the teeth may have to be extracted and implants or dentures are required. Loss of nerves in the affected teeth may occur.
Because lack of sialic acid appears to be part of the pathology of IBM caused by GNE mutations, clinical trials with sialic acid supplements, and with a precursor of sialic acid, N-Acetylmannosamine, have been conducted, and as of 2016 further trials were planned.
The treatment of 2-Hydroxyglutaric aciduria is based on seizure control, the prognosis depends on how severe the condition is.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
The treatment (management) of Emery–Dreifuss muscular dystrophy can be done via several methods, however secondary complications should be consider in terms of the progression of EDMD, therefore cardiac defibrillators may be needed at some point by the affected individual. Other possible forms of management and treatment are the following:
- Orthopaedics
- Surgery
- Monitor/treat any cardiac issues
- Respiratory aid
- Physical therapy