Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Non-surgical interventions include three elements: weight control, exercise control, and medication. Canine massage may alleviate discomfort and help move lymph and nutrients through the system. Weight control is often "the single most important thing that we can do to help a dog with arthritis", and consequentially "reducing the dog's weight is enough to control all of the symptoms of arthritis in many dogs". Reasonable exercise stimulates cartilage growth and reduces degeneration (though excessive exercise can do harm too), and also regular long walks in early or mild dysplasia can help prevent loss of muscle mass to the hips. Medication can reduce pain and discomfort, and also reduce damaging inflammation.
Non-surgical intervention is usually via a suitable non-steroidal anti-inflammatory drug (NSAID) which doubles as an anti-inflammatory and painkiller. Typical NSAIDs used for hip dysplasia include carprofen and meloxicam (often sold as Rimadyl and Metacam respectively), both used to treat arthritis resulting from dysplasia, although other NSAIDs such as tepoxalin (Zubrin) and prednoleucotropin ("PLT", a combination of cinchophen and prednisolone) are sometimes tried. NSAIDs vary dramatically between species as to effect: a safe NSAID in one species may be unsafe in another. It is important to follow veterinary advice.
A glucosamine-based nutritional supplement may give the body additional raw materials used in joint repair. Glucosamine can take 3–4 weeks to start showing its effects, so the trial period for medication is usually at least 3–5 weeks. In vitro, glucosamine has been shown to have negative effects on cartilage cells.
It is also common to try multiple anti-inflammatories over a further 4–6 week period, if necessary, since an animal will often respond to one type but fail to respond to another. If one anti-inflammatory does not work, a vet will often try one or two other brands for 2–3 weeks each, also in conjunction with ongoing glucosamine, before concluding that the condition does not seem responsive to medication.
Carprofen, and other anti-inflammatories in general, whilst very safe for most animals, can sometimes cause problems for some animals, and (in a few rare cases) sudden death through liver toxicity. This is most commonly discussed with carprofen but may be equally relevant with other anti-inflammatories. As a result, it is often recommended to perform monthly (or at least, twice-annually) blood tests to confirm that the animal is not reacting adversely to the medications. Such side effects are rare but worth being aware of, especially if long-term use is anticipated.
This regimen can usually be maintained for the long term, as long as it is effective in keeping the symptoms of dysplasia at bay.
Some attempts have been made to treat the pain caused by arthritic changes through the use of "laser therapy", in particular "class IV laser therapy". Well-controlled clinical trials are unfortunately lacking, and much of the evidence for these procedures remains anecdotal.
There is no complete cure, although there are many options to alleviate the clinical signs. The aim of treatment is to enhance quality of life. Crucially, this is an inherited, degenerative condition and so will change during the life of an animal, so any treatment is subject to regular review or re-assessment if the symptoms appear to get worse or anything significantly changes.
If the problem is relatively mild, then sometimes all that is needed to bring the symptoms under control are suitable medications to help the body deal better with inflammation, pain and joint wear. In many cases this is all that is needed for a long time.
If the problem cannot be controlled with medications, then often surgery is considered. There are traditionally two types of surgery - those which reshape the joint to reduce pain or help movement, and hip replacement which completely replaces the damaged hip with an artificial joint, similar to human hip replacements.
Galeazzi fractures are best treated with open reduction of the radius and the distal radio-ulnar joint. It has been called the "fracture of necessity," because it necessitates open surgical treatment in the adult. Nonsurgical treatment results in persistent or recurrent dislocations of the distal ulna. However, in skeletally immature patients such as children, the fracture is typically treated with closed reduction.
If intraarticular trapeziometacarpal fractures (such as the Bennett or Rolando fractures) are allowed to heal in a displaced position, significant post-traumatic osteoarthritis of the base of the thumb is virtually assured. Some form of surgical treatment (typically either a CRPP or an ORIF) is nearly always recommended to ensure a satisfactory outcome for these fractures, if there is significant displacement.
The long-term outcome after surgical treatment appears to be similar, whether the CRPP or the ORIF approach is used. Specifically, the overall strength of the affected hand is typically diminished, and post-traumatic osteoarthritis tends to develop in almost all cases. The degree of weakness and the severity of osteoarthritis does however appear to correlate with the quality of reduction of the fracture. Therefore, the goal of treatment of Bennett fracture should be to achieve the most precise reduction possible, whether by the CRPP or the ORIF approach.
Though these fractures commonly appear quite subtle or even inconsequential on radiographs, they can result in severe long-term dysfunction of the hand if left untreated. In his original description of this type of fracture in 1882, Bennett stressed the need for early diagnosis and treatment in order to prevent loss of function of the thumb CMC joint, which is critical to the overall function of the hand.
- In the most minor cases of Bennett fracture, there may be only small avulsion fractures, relatively little joint instability, and minimal subluxation of the CMC joint (less than 1 mm). In such cases, closed reduction followed by immobilization in a thumb spica cast and serial radiography may be all that is required for effective treatment.
- For Bennett fractures where there is between 1 mm and 3 mm of displacement at the trapeziometacarpal joint, closed reduction and percutaneous pin fixation (CRPP) with Kirschner wires is often sufficient to ensure a satisfactory functional outcome. The wires are not employed to connect the two fracture fragments together, but rather to secure the first or second metacarpal to the trapezium.
- For Bennett fractures where there is more than 3 mm of displacement at the trapeziometacarpal joint, open reduction and internal fixation (ORIF) is typically recommended.
Regardless of which approach is employed (nonsurgical, CRPP, or ORIF), immobilization in a cast or thumb spica splint is required for four to six weeks.
Early hip dysplasia can often be treated using a Pavlik harness (see photograph) or the Frejka pillow/splint in the first year of life with usually normal results. Complications can occur when using the Pavlik Harness. Cases of Femoral Nerve Palsy and Avascular Necrosis of the femoral head have been reported with the use of the Pavlik harness, but whether these cases were due to improper application of the device or a complication encountered in the course of the disorder remains unresolved. Complications arise mainly because the sheet of the iliopsoas muscle pushes circumflex artery against the neck of the femur and decreases blood flow to the femoral head, so the Frejka pillow is not indicated in all the forms of the developmental dysplasia of the hip.
Other devices employed include the spica cast, particularly following surgical closed reduction, open reduction, or osteotomy in babies and young children. Traction is sometimes used in the weeks leading up to a surgery to help stretch ligaments in the hip joint, although its use is controversial and varies amongst physicians.
Most temporomandibular disorders (TMDs) are self-limiting and do not get worse. Simple treatment, involving self-care practices, rehabilitation aimed at eliminating muscle spasms, and restoring correct coordination, is all that is required. Nonsteroidal anti inflammatory analgesics (NSAIDs) should be used on a short-term, regular basis and not on an as needed basis. On the other hand, treatment of chronic TMD can be difficult and the condition is best managed by a team approach; the team consists of a primary care physician, a dentist, a physiotherapist, a psychologist, a pharmacologist, and in small number of cases, a surgeon. The different modalities include patient education and self-care practices, medication, physical therapy, splints, psychological counseling, relaxation techniques, biofeedback, hypnotherapy, acupuncture, and arthrocentesis.
As with most dislocated joints, a dislocated jaw can usually be successfully positioned into its normal position by a trained medical professional. Attempts to readjust the jaw without the assistance of a medical professional could result in worsening of the injury. The health care provider may be able to set it back into the correct position by manipulating the area back into its proper position. Numbing medications such as general anesthetics, muscle relaxants, or in some cases sedation, may be needed to relax the strong jaw muscle. In more severe cases, surgery may be needed to reposition the jaw, particularly if repeated jaw dislocations have occurred.
In older children the adductor and iliopsoas muscles may have to be treated surgically because they adapt to the dislocated joint position (contracture).
Braces and splints are often used following either of these methods to continue treatment.
Although some children "outgrow" untreated mild hip dysplasia and some forms of untreated dysplasia cause little or no impairment of quality of life, studies have as yet been unable to find a method of predicting outcomes. On the other hand, it has often been documented that starting treatment late leads to complications and ends in poor results.
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat PFPS, however there is only very limited evidence that they are effective. NSAIDs may reduce pain in the short term, overall however, after three months pain is not improved. There is no evidence that one type of NSAID is superior to another in PFPS, and therefore some authors have recommended that the NSAID with fewest side effects and which is cheapest should be used.
Glycosaminoglycan polysulfate (GAGPS) inhibits proteolytic enzymes and increases synthesis and degree of polymerization of hyaluronic acid in synovial fluid. There is contradictory evidence that it is effective in PFPS.
Treatment is usually conservative in nature. Patient education on lifestyle modifications, chiropractic, nonsteroidal anti-inflammatory drugs (NSAIDs), physical therapy, and osteopathic care are common forms of manual care that help manage such conditions. Other alternative therapies such as massage, trigger-point therapy, yoga and acupuncture may be of limited benefit. Surgery is occasionally performed.
Many of the treatments for cervical spondylosis have not been subjected to rigorous, controlled trials. Surgery is advocated for cervical radiculopathy in patients who have intractable pain, progressive symptoms, or weakness that fails to improve with conservative therapy. Surgical indications for cervical spondylosis with myelopathy (CSM) remain somewhat controversial, but "most clinicians recommend operative therapy over conservative therapy for moderate-to-severe myelopathy" (Baron, M.E.).
Physical therapy may be effective for restoring range of motion, flexibility and core strengthening. Decompressive therapies (i.e. manual mobilization, mechanical traction) may also help alleviate pain. However, physical therapy and osteopathy cannot "cure" the degeneration, and some people view that strong compliance with postural modification is necessary to realize maximum benefit from decompression, adjustments and flexibility rehabilitation.
It has been argued, however, that the cause of spondylosis is simply old age, and that posture modification treatment is often practiced by those who have a financial interest (such as Worker's Compensation) in proving that it is caused by work conditions and poor physical habits. Understanding anatomy is the key to conservative management of spondylosis.
Often, degenerative disc disease can be successfully treated without surgery. One or a combination of treatments such as physical therapy, anti-inflammatory medications such as nonsteroidal anti-inflammatory drugs, traction, or epidural steroid injection often provide adequate relief of troubling symptoms.
Surgery may be recommended if the conservative treatment options do not provide relief within two to three months. If leg or back pain limits normal activity, if there is weakness or numbness in the legs, if it is difficult to walk or stand, or if medication or physical therapy are ineffective, surgery may be necessary, most often spinal fusion. There are many surgical options for the treatment of degenerative disc disease, including anterior and posterior approaches. The most common surgical treatments include:
New treatments are emerging that are still in the beginning clinical trial phases. Glucosamine injections may offer pain relief for some without precluding the use of more aggressive treatment options . In the US, artificial disc replacement is viewed cautiously as a possible alternative to fusion in carefully selected patients, yet it is widely used in a broader range of cases in Europe, where multi-level disc replacement of the cervical and lumbar spine is common . Adult stem cell therapies for disc regeneration are in their infancy. Investigation into mesenchymal stem cell therapy knife-less fusion of vertebrae in the United States began in 2006.
In general, anti-inflammatory drugs are prescribed initially. This medical treatment is usually accompanied by physiotherapy to increase back and stomach muscles. Thus, the spine can be both relieved and stabilized. If these conservative measures do not bring about betterment, minimally invasive procedures such as a facet infiltration can be conducted to offer relief. In this procedure, a local anesthetic is injected directly into the respective joint, usually in combination with a cortisone preparation (corticosteroid).
Magnetic resonance imaging rarely can give useful information for managing patellofemoral pain syndrome and treatment should focus on an appropriate rehabilitation program including correcting strength and flexibility concerns. In the uncommon cases where a patient has mechanical symptoms like a locked knee, knee effusion, or failure to improve following physical therapy, then an MRI may give more insight into diagnosis and treatment.
First options for treatment are conservative, using hot or cold packs, rest and NSAID's at first. If no improvement is made, a splint or brace can be used to keep the deviated arm straight. When none of the conservative treatments work surgical intervention is designated.
There is moderate quality evidence that manual therapy and therapeutic exercise improves pain in patients with thumb CMC
OA at both short- and intermediate-term follow-up, and low to moderate quality evidence that magneto therapy improves pain
and function at short-term follow-up. There is moderate evidence that orthoses (splints) can improve hand function at long-term follow-up. There is very low to low-quality evidence that other conservative interventions provide no significant improvement in pain and in function at short- and long-term follow-up. Some of the commonly performed conservative interventions performed in therapy have evidence to support their use to improve hand function and decrease hand pain in patients with CMC OA.
It is sometimes possible to correct the problem with surgery, though this has high failure rates for treatment of post-traumatic radioulnar synostosis.
Manual therapy is another commonly used treatment modality in which the joints or muscles of patients are manipulated with the intention of restoring the range of motion of the joint or increasing the flexibility of the muscles around the joint. Intervention techniques:
- Kaltenborn Mobilization Technique
- Maitland's Mobilization
- Neurodynamic Techniques
Early on arthritis of the shoulder can be managed with mild analgesics and gentle exercises.
Known gentle exercises include warm water therapy pool exercises that are provided by a trained and licensed physical therapist; approved land exercises to assure free movement of the arthritic area; cortisone injections (administered at the minimum of every six months according to orthopedic physicians) to reduce inflammation; ice and hot moist pact application are very effective. Moist heat is preferred over ice whereas ice is preferred if inflammation occurs during the daytime hours. Local analgesics along with ice or moist heat are adequate treatments for acute pain.
In the case of rheumatoid arthritis, specific medications selected by a rheumatologist may offer substantial relief.
When exercise and medication are no longer effective, shoulder replacement surgery for arthritis may be considered. In this operation, a surgeon replaces the shoulder joint with an artificial ball for the top of the humerus and a cap (glenoid) for the scapula. Passive shoulder exercises (where someone else moves the arm to rotate the shoulder joint) are started soon after surgery. Patients begin exercising on their own about 3 to 6 weeks after surgery. Eventually, stretching and strengthening exercises become a major part of the rehabilitation programme. The success of the operation often depends on the condition of rotator cuff muscles prior to surgery and the degree to which the patient follows the exercise programme.
In young and active patients a partial shoulder replacement with a non-prosthetic glenoid arthroplasty may also be a consideration .
Since sitting on the affected area may aggravate the condition, a cushion with a cutout at the back under the coccyx is recommended. If there is tailbone pain with bowel movements, then stool softeners and increased fiber in the diet may help. Anti-inflammatory medications such as NSAIDS may be prescribed.
If the pain persists, other treatments may be applied. Manual treatment is carried out by repeated massage of the muscles attached to the coccyx, via the anus. Such treatment is usually given by a chiropractor, osteopath or physical therapist. Thiele applied this treatment to a series of 169 coccydynia patients, and reported 63% cured.
Orthopaedic surgeons commonly inject corticosteroids into the painful joint. Maigne and Tamalet applied this treatment to 86 patients under fluoroscopic guidance. Two months after the injection, 50% of the patients with luxation or hypermobility were improved or healed, but only 27% of the patients with no visible abnormality improved. Where an abnormality had been found, and injection relieved the pain, the abnormality remained but ceased to be painful.
Temporary or permanent nerve blocks are sometimes applied in cases of coccydynia. Foye et al reported that repeated temporary nerve blocks by injection at the ganglion impar could give relief in a number of cases, and occasionally a single injection was sufficient.
Anti-inflammatory medicines such as aspirin, naproxen or ibuprofen among others can be taken to help with pain. In some cases the physical therapist will use ultrasound and electrical stimulation, as well as manipulation. Gentle stretching and strengthening exercises are added gradually. If there is no improvement, the doctor may inject a corticosteroid medicine into the space under the acromion. However, recent level one evidence showed limited efficacy of corticosteroid injections for pain relief. While steroid injections are a common treatment, they must be used with caution because they may lead to tendon rupture. If there is still no improvement after 6 to 12 months, the doctor may perform either arthroscopic or open surgery to repair damage and relieve pressure on the tendons and bursae.
In those with calcific tendinitis of the shoulder high energy extracorporeal shock-wave therapy can be useful. It is not useful in other types of tendonitis.
Current surgical procedures used to treat spondylosis aim to alleviate the signs and symptoms of the disease by decreasing pressure in the spinal canal (decompression surgery) and/or by controlling spine movement (fusion surgery).
Decompression surgery: The vertebral column can be operated on from both an anterior and posterior approach. The approach varies depending on the site and cause of root compression. Commonly, osteophytes and portions of intervertebral disc are removed.
Fusion surgery: Performed when there is evidence of spinal instability or mal-alignment. Use of instrumentation (such as pedicle screws) in fusion surgeries varies across studies.
Treatment of medial knee injuries varies depending on location and classification of the injuries. The consensus of many studies is that isolated grade I, II, and III injuries are usually well suited to non-operative treatment protocols. Acute grade III injuries with concomitant multiligament injuries or knee dislocation involving medial side injury should undergo surgical treatment. Chronic grade III injuries should also undergo surgical treatment if the patient is experiencing rotational instability or side-to-side instability.
If non-surgical treatments fail to relieve the pain, or in cases of cancer, surgery to remove the coccyx (coccygectomy) may be required. In cases where pain persists after surgery, standard drugs for chronic pain, such as tri-cyclic anti-depressants, may help alleviate the pain.
Surgical treatment is only initiated if there is severe pain, as the available operations can be difficult. Otherwise, high arches may be handled with care and proper treatment.
Suggested conservative management of patients with painful pes cavus typically involves strategies to reduce and redistribute plantar pressure loading with the use of foot orthoses and specialised cushioned footwear. Other non-surgical rehabilitation approaches include stretching and strengthening of tight and weak muscles, debridement of plantar callosities, osseous mobilization, massage, chiropractic manipulation of the foot and ankle, and strategies to improve balance. There are also numerous surgical approaches described in the literature that are aimed at correcting the deformity and rebalancing the foot. Surgical procedures fall into three main groups:
1. soft-tissue procedures (e.g. plantar fascia release, Achilles tendon lengthening, tendon transfer);
2. osteotomy (e.g. metatarsal, midfoot or calcaneal);
3. bone-stabilising procedures (e.g. triple arthrodesis).
Immediate hospitalization is required, as such injuries may result in varying degrees of spinal cord injury with possible paralysis. X-rays and MRIs are taken to determine whether the burst fracture can be managed with or without surgery. Surgical management is required when the burst fracture is unstable. Predicting spinal instability of vertebral thoracic lumbar fractures is based on several radiologic and clinical parameters. Efforts to refine fracture classification schemes to better predict instability continue. Application of axial zone model proposed by physicians at Barrow Neurological Institute may enhance the ability to predict stability, depending not only on the number of columns, but also on the number of zones involved in the injuries. Further clinical and biomechanical studies are warranted to validate this model.
Different surgical treatments are available, the most common involving fusion of the remaining vertebra in the traumatized area, and removal of the larger loose vertebra pieces. A "spinal fusion" surgery entails two or more vertebra are permanently immobilized through surgery using titanium implants. Another less common technique is to replace the burst vertebra with an artificial bone or cadaver bone. Both latter strategies have been used successfully in elderly subjects, and has not yet been attempted in younger subjects due to the unknown stability over the long term.
Nonsurgical management is possible when the burst fracture subject is intact neurologically. Nonsurgical treatment involves the use of a full-body, exterior brace, normally a thoracic lumbar sacral orthosis (TLSO), often custom-molded to the subject's body. X-rays and MRIs are again taken with the subject every 2 weeks in the TLSO to determine whether the spine will remain stable. The TLSO is worn for 2–3 months 24/7. The subject undergoes several months of physical therapy to strengthen atrophied muscles and basically learn how to walk again. It is probable that the subject may exhibit some spinal dislocation after removal of the TLSO, and it is well within expected parameters with little neurological impact experienced by month 3. If no further major dislocation or subluxation occurs, no other external stabilization may be required.