Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no known definitive cure for OMS. However, several drugs have proven to be effective in its treatment.
Some of medication used to treat the symptoms are:
- ACTH has shown improvements in symptoms but can result in an incomplete recovery with residual deficits.
- Corticosteroids (such as "prednisone" or "methylprednisolone") used at high dosages (500 mg - 2 g per day intravenously for a course of 3 to 5 days) can accelerate regression of symptoms. Subsequent very gradual tapering with pills generally follows. Most patients require high doses for months to years before tapering.
- Intravenous Immunoglobulins (IVIg) are often used with varying results.
- Several other immunosuppressive drugs, such as cyclophosphamide and azathioprine, may be helpful in some cases.
- Chemotherapy for neuroblastoma may be effective, although data is contradictory and unconvincing at this point in time.
- Rituximab has been used with encouraging results.
- Other medications are used to treat symptoms without influencing the nature of the disease (symptomatic treatment):
- Trazodone can be useful against irritability and sleep problems
- Additional treatment options include plasmapheresis for severe, steroid-unresponsive relapses.
The National Organization for Rare Disorders (NORD) recommends FLAIR therapy consisting of a three-agent protocol involving front-loaded high-dose ACTH, IVIg, and rituximab that was developed by the National Pediatric Myoclonus Center, and has the best-documented outcomes. Almost all patients (80-90%) show improvement with this treatment and the relapse rate appears to be about 20%.
A more detailed summary of current treatment options can be found at Treatment Options
The following medications should probably be avoided:
- Midazolam - Can cause irritability.
- Melatonin - Is known to stimulate the immune system.
- Also, see for more details
Concerning more serious afflictions, the complex origins of myoclonus may be treated with multiple drugs, which have a limited effect individually, but greater when combined with others that act on different brain pathways or mechanisms. Treatment is most effective when the underlying cause is known, and can be treated as such. Some drugs being studied in different combinations include clonazepam, sodium valproate, piracetam, and primidone. Hormonal therapy may improve responses to antimyoclonic drugs in some people.
Some studies have shown that doses of 5-hydroxytryptophan (5-HTP) leads to improvement in patients with some types of action myoclonus and PME. These differences in the effect of 5-HTP on patients with myoclonus have not yet been explained.
Many of the drugs used for myoclonus, such as barbiturates, phenytoin and primidone, are also used to treat epilepsy. Barbiturates slow down the central nervous system and cause tranquilizing or antiseizure effects. Phenytoin and primidone are effective antiepileptics drugs, although phenytoin can cause liver failure or have other harmful long-term effects in patients with PME. Sodium valproate is an alternative therapy for myoclonus and can be used either alone or in combination with clonazepam. Some people have adverse reactions to clonazepam and/or sodium valproate.
When patients are taking multiple medications, the discontinuation of drugs suspected of causing myoclonus and treatment of metabolic derangements may resolve some cases of myoclonus. When pharmacological treatment is indicated anticonvulsants are the main line of treatment. Paradoxical reactions to treatment are notable. Drugs which most people respond to may in other individuals worsen their symptoms. Sometimes this leads to the mistake of increasing the dose, rather than decreasing or stopping the drug. Treatment of myoclonus focuses on medications that may help reduce symptoms. Drugs used include sodium valproate, clonazepam, the anticonvulsant levetiracetam, and piracetam. Dosages of clonazepam usually are increased gradually until the patient improves or side effects become harmful. Drowsiness and loss of coordination are common side effects. The beneficial effects of clonazepam may diminish over time if the patient develops a tolerance to the drug.
In forms of myoclonus where only a single area is affected, and even in a few other various forms, Botox injections (OnabotulinumtoxinA) may be helpful. The chemical messenger responsible for triggering the involuntary muscle contractions is blocked by the Botulinum toxins of the Botox.
Surgery is also a viable option for treatment if the symptoms are caused by a tumor or lesion in the brain or spinal cord. Surgery may also correct symptoms in those where myoclonus affects parts of the face or ear. While DBS is still being studied for use with myoclonus, Deep Brain Stimulation has also been tried in those with this and other movement disorders.
There is no evidence-based criteria for treating SPS, and there have been no large controlled trials of treatments for the condition. The rarity of the disease complicates efforts to establish guidelines.
GABA agonists, usually diazepam but sometimes other benzodiazepines, are the primary treatment for SPS. Drugs that increase GABA activity alleviate muscle stiffness caused by a lack of GABAergic tone. They increase pathways that are dependent upon GABA and have muscle relaxant and anticonvulsant effects, often providing symptom relief. Because the condition worsens over time, patients generally require increased dosages, leading to more side effects. For this reason, gradual increase in dosage of benzodiazepines is indicated. Baclofen, a GABA agonist, is generally used when individuals taking high doses of benzodiazepines have high side effects. In some cases it has shown improvements in electrophysiological and muscle stiffness when administered intravenously. Intrathecal baclofen administration may not have long-term benefits though, and there are potential serious side effects.
Treatments that target the autoimmune response are also used. Intravenous immunoglobin is the best second-line treatment for SPS. It often decreases stiffness and improves quality of life and startle reflex. It is generally safe, but there are possible serious side effects and it is expensive. The European Federation of Neurological Societies suggests it be used when disabled patients do not respond well to diazepam and baclofen. Steroids, rituximab, and plasma exchange have been used to suppress the immune system in SPS patients, but the efficacy of these treatments is unclear. Botulinum toxin has been used to treat SPS, but it does not appear to have long-term benefits and has potential serious side effects. In paraneoplastic cases, tumors must be managed for the condition to be contained. Opiates are sometimes used to treat severe pain, but in some cases they exacerbate symptoms.
In most of the reported cases, the treatment options were very similar. Plasmapheresis alone or in combination with steroids, sometimes also with thymectomy and azathioprine, have been the most frequently used therapeutic approach in treating Morvan’s Syndrome. However, this does not always work, as failed response to steroids and to subsequently added plasmapheresis have been reported. Intravenous immunoglobulin was effective in one case.
In one case, the dramatic response to high-dose oral prednisolone together with pulse methylprednisolone with almost complete disappearance of the symptoms within a short period should induce consideration of corticosteroids.
In another case, the subject was treated with haloperidol (6 mg/day) with some improvement in the psychomotor agitation and hallucinations, but even high doses of carbamazepine given to the subject failed to improve the spontaneous muscle activity. Plasma Exchange (PE) was initiated, and after the third such session, the itching, sweating, mental disturbances, and complex nocturnal behavior improved and these symptoms completely disappeared after the sixth session, with improvement in insomnia and reduced muscle twitching. However, one month after the sixth PE session, there was a progressive worsening of insomnia and diurnal drowsiness, which promptly disappeared after another two PE sessions.
In one case there high dose steroid treatment resulted in a transient improvement, but aggressive immuno-suppressive therapy with cyclophosphamide was necessary to control the disease and result in a dramatic clinical improvement.
In another case, the subject was treated with prednisolone (1 mg/kg body weight) with carbamazepine, propanolol, and amitriptyline. After two weeks, improvement with decreased stiffness and spontaneous muscle activity and improved sleep was observed. After another 7–10 days, the abnormal sleep behavior disappeared completely.
In another case, symptomatic improvement with plasmapheresis, thymectomy, and chronic immunosuppression provide further support for an autoimmune or paraneoplastic basis.
Although thymectomy is believed to be a key element in the proposed treatment, there is a reported case of Morvan’s Syndrome presenting itself post-thymectomy.
Given the benign nature of the condition and the low seizure frequency, treatment is often unnecessary. If treatment is warranted or preferred by the child and his or her family, antiepileptic drugs can usually control the seizures easily. Carbamazepine is the most frequently used first-line drug, but many other antiepileptic drugs, including valproate, phenytoin, gabapentin, levetiracetam and sultiame have been found effective as well. Bedtime dosing is advised by some. Treatment can be short and drugs can almost certainly be discontinued after two years without seizures and with normal EEG findings, perhaps even earlier.
Parental education about Rolandic epilepsy is the cornerstone of correct management. The traumatizing, sometimes long-lasting effect on parents is significant.
It is unclear if there are any benefits to clobazam over other seizure medications.
Antiepileptics like valproate must act upon GABA receptors and manipulate ionic conductance to reduce tremors and spasms in myoclonus dystonia. GABA neurons that fire rapidly and affect the motor cortex are blocked by antiepileptics in addition to changes in sodium and calcium concentrations that can excite the neuron. Different antiepileptics vary in sufficiency to control ionic conductance and can also produce seizures or myoclonus symptoms in some patients.
Benzodiazepines such as clonazepam improve tremors caused by the myoclonus aspect of this syndrome by binding allosterically to GABA ionotropic receptors, causing an influx of chloride ions that produce an inhibitory effect that can calm myoclonic jerks.
Valproic acid is the first line drug choice for reducing generalised seizures and myoclonus. Levetiracetam is also effective for both generalised seizures and myoclonus. Clonazepam and high-dose piracetam can alleviate myoclonus. Phenytoin can worsen seizures and may speed up neurodegeneration; carbamazepine, oxcarbazepine, tiagabine, vigabatrin, gabapentin and pregabalin may worsen myoclonus and myoclonic seizures. Other common medications to treat ULD include topiramate and zonisamide. If an individual with Unverricht–Lundborg disease is particularly sensitive to a certain type of stimulus, it is also beneficial to reduce the patient's exposure to that stimulus in order to reduce the likelihood of seizures. Since ULD is progressive and may not get better over time, depression has been documented in many cases, so providing a strong support group of friends, family, and even other individuals with ULD is very beneficial.
The most commonly effective treatment is clonazepam, which leads to the increased efficacy of another inhibitory neurotransmitter, GABA. There are anecdotal reports of the use of Levetiracetam in genetic and acquired hyperekplexia. During attacks of hypertonia and apnea, the limbs and head may be flexed towards the trunk in order to dissipate the symptoms. This is named the Vigevano maneuver after the doctor who invented it.
While there is no current cure to repair the mutated CSTB gene, several antiepileptic drugs are effective in reducing seizures and helping patients with ULD to manage the symptoms. In addition, new research is being performed to examine the effectiveness of other types of treatments.
Like many mitochondrial diseases, there is no cure for MERRF, no matter the means for diagnosis of the disease. The treatment is primarily symptomatic. High doses of Coenzyme Q10, B complex vitamins and L-Carnitine are the drugs that patients are treated with in order to account for the altered metabolic processed resulting in the disease. There is very little success with these treatments as therapies in hopes of improving mitochondrial function. The treatment only alleviates symptoms and these do not prevent the disease from progressing. Patients with concomitant disease, such as diabetes, deafness or cardiac disease, are treated in combination to manage symptoms.
Before prescribing medication for these conditions which often resolve spontaneously, recommendations have pointed to improved skin hygiene, good hydration via fluids, good nutrition, and installation of padded bed rails with use of proper mattresses. Pharmacological treatments include the typical neuroleptic agents such as fluphenazine, pimozide, haloperidol and perphenazine which block dopamine receptors; these are the first line of treatment for hemiballismus. Quetiapine, sulpiride and olanzapine, the atypical neuroleptic agents, are less likely to yield drug-induced parkinsonism and tardive dyskinesia. Tetrabenazine works by depleting presynaptic dopamine and blocking postsynaptic dopamine receptors, while reserpine depletes the presynaptic catecholamine and serotonin stores; both of these drugs treat hemiballismus successfully but may cause depression, hypotension and parkinsonism. Sodium valproate and clonazepam have been successful in a limited number of cases. Stereotactic ventral intermediate thalamotomy and use of a thalamic stimulator have been shown to be effective in treating these conditions.
The medical treatment of essential tremor at the Movement Disorders Clinic at Baylor College of Medicine begins with minimizing stress and tremorgenic drugs along with recommending a restricted intake of beverages containing caffeine as a precaution, although caffeine has not been shown to significantly intensify the presentation of essential tremor. Alcohol amounting to a blood concentration of only 0.3% has been shown to reduce the amplitude of essential tremor in two-thirds of patients; for this reason it may be used as a prophylactic treatment before events during which one would be embarrassed by the tremor presenting itself. Using alcohol regularly and/or in excess to treat tremors is highly unadvisable, as there is a purported correlation between tremor and alcoholism. Alcohol is thought to stabilize neuronal membranes via potentiation of GABA receptor-mediated chloride influx. It has been demonstrated in essential tremor animal models that the food additive 1-octanol suppresses tremors induced by harmaline, and decreases the amplitude of essential tremor for about 90 minutes.
Two of the most valuable drug treatments for essential tremor are propranolol, a beta blocker, and primidone, an anticonvulsant. Propranolol is much more effective for hand tremor than head and voice tremor. Some beta-adrenergic blockers (beta blockers) are not lipid-soluble and therefore cannot cross the blood–brain barrier (propranolol being an exception), but can still act against tremors; this indicates that this drug’s mechanism of therapy may be influenced by peripheral beta-adrenergic receptors. Primidone’s mechanism of tremor prevention has been shown significantly in controlled clinical studies. The benzodiazepine drugs such as diazepam and barbiturates have been shown to reduce presentation of several types of tremor, including the essential variety. Controlled clinical trials of gabapentin yielded mixed results in efficacy against essential tremor while topiramate was shown to be effective in a larger double-blind controlled study, resulting in both lower Fahn-Tolosa-Marin tremor scale ratings and better function and disability as compared to placebo.
It has been shown in two double-blind controlled studies that injection of botulinum toxin into muscles used to produce oscillatory movements of essential tremors, such as forearm, wrist and finger flexors, may decrease the amplitude of hand tremor for approximately three months and that injections of the toxin may reduce essential tremor presenting in the head and voice. The toxin also may help tremor causing difficulty in writing, although properly adapted writing devices may be more efficient. Due to high incidence of side effects, use of botulinum toxin has only received a C level of support from the scientific community.
Deep brain stimulation toward the ventral intermediate nucleus of the thalamus and potentially the subthalamic nucleus and caudal zona incerta nucleus have been shown to reduce tremor in numerous studies. That toward the ventral intermediate nucleus of the thalamus has been shown to reduce contralateral and some ipsilateral tremor along with tremors of the cerebellar outflow, head, resting state and those related to hand tasks; however, the treatment has been shown to induce difficulty articulating thoughts (dysarthria), and loss of coordination and balance in long-term studies. Motor cortex stimulation is another option shown to be viable in numerous clinical trials.
The National Institute of Neurological Disorders and Stroke (NINDS) conducts and supports research on various movement disorders, including opsoclonus myoclonus. These studies are focused on finding ways to prevent, treat, and cure these disorders, as well as increasing knowledge about them.
Because most patients respond to steroids or immunosuppressant treatment, this condition is now also referred to as steroid-responsive encephalopathy.
Initial treatment is usually with oral prednisone (50–150 mg/day) or high-dose IV methylprednisolone (1 g/day) for 3–7 days. Thyroid hormone treatment is also included if required.
Failure of some patients to respond to this first line treatment has produced a variety of alternative treatments including azathioprine, cyclophosphamide, chloroquine, methotrexate, periodic intravenous immunoglobulin and plasma exchange. There have been no controlled trials so the optimal treatment is not known.
Seizures, if present, are controlled with typical antiepileptic agents.
Succinic acid has been used successfully to treat MELAS syndrome, and also Leighs disease. Patients are managed according to what areas of the body are affected at a particular time. Enzymes, amino acids, antioxidants and vitamins have been used.
Also the following supplements may help:
- CoQ10 has been helpful for some MELAS patients. Nicotinamide has been used because complex l accepts electrons from NADH and ultimately transfers electrons to CoQ10.
- Riboflavin has been reported to improve the function of a patient with complex l deficiency and the 3250T-C mutation.
- The administration of L-arginine during the acute and interictal periods may represent a potential new therapy for this syndrome to reduce brain damage due to impairment of vasodilation in intracerebral arteries due to nitric oxide depletion.
- There is also a case report where succinate was successfully used to treat uncontrolled convulsions in MELAS patients, although this treatment modality is yet to be thoroughly investigated or widely recommended.
Ataxia usually goes away without any treatment. In cases where an underlying cause is identified, your doctor will treat the underlying cause. In extremely rare cases, you may have continuing and disabling symptoms. Treatment includes corticosteroids, Intravenous immunoglobulin, or plasma exchange therapy. Drug treatment to improve muscle coordination has a low success rate. However, the following drugs may be prescribed: clonazepam, amantadine, gabapentin, or buspirone. Occupational or physical therapy may also alleviate lack of coordination. Changes to diet and nutritional supplements may also help. Treatment will depend on the cause. If the acute cerebellar ataxia is due to bleeding, surgery may be needed. For a stroke, medication to thin the blood can be given. Infections may need to be treated with antibiotics. Steroids may be needed for swelling (inflammation) of the cerebellum (such as from multiple sclerosis). Cerebellar ataxia caused by a recent viral infection may not need treatment.
Immunosuppressive therapies, encompassing corticosteroids, azathioprine, methotrexate and more recently, rituximab, are the mainstay of therapy. Other treatments include PE, IVIG, and thymectomy. Patients reportedly exhibited a heterogenous response to immunomodulation.
Antiepileptics can be used for symptomatic relief of peripheral nerve hyperexcitability. Indeed, some patients have exhibited a spontaneous remission of symptoms.
PLMD is often treated with anti-Parkinson medication; it may also respond to anticonvulsants, benzodiazepines, and narcotics. Patients must stay on these medications in order to experience relief, because there is no known cure for this disorder.
PLMs tend to be exacerbated by tricyclic antidepressants, SSRIs, stress, and sleep deprivation. It is also advised not to consume caffeine, alcohol, or antidepressants as these substances could worsen the PLMD symptoms.
Other medications aimed at reducing or eliminating the leg jerks or the arousals can be prescribed. Non-ergot derived dopaminergic drugs (pramipexole and ropinirole) are preferred. Other dopaminergic agents such as co-careldopa, co-beneldopa, pergolide, or lisuride may also be used. These drugs decrease or eliminate both the leg jerks and the arousals. These medications are also successful for the treatment of restless legs syndrome.
In one study, co-careldopa was superior to dextropropoxyphene in decreasing the number of leg kicks and the number of arousals per hour of sleep. However, co-careldopa and, to a lesser extent, pergolide may shift the leg movements from the nighttime to the daytime.
Clonazepam (Klonopin), in doses of 1 mg has been shown to improve objective and subjective measures of sleep.
Research on myoclonus is supported through the National Institute of Neurological Disorders and Stroke (NINDS). The primary focus of research is on the role of neurotransmitters and receptors involved in the disease. Identifying whether or not abnormalities in these pathways cause myoclonus may help in efforts to develop drug treatments and diagnostic tests. Determining the extent that genetics play in these abnormalities may lead to potential treatments for their reversal, potentially correcting the loss of inhibition while enhancing mechanisms in the body that would compensate for their effects.
Valbenazine has been approved by the FDA for tardive dyskinesia. Tetrabenazine, which is a dopamine depleting drug, is sometimes used to treat tardive dyskinesia and other movement disorders. However, it is only approved to treat chorea associated with Huntington's disease. The related VMAT2 inhibitor, reserpine, has also been tried in one small randomised double-blind placebo-controlled trial as a treatment for TD with success, as has α-methyldopa. Ondansetron has shown some benefit in experimental studies on tardive dyskinesia and a variety of anti-Parkinsonian medications are used such as donepezil, baclofen, and pramipexole. Clonidine may also be useful in the treatment of TD, although dose-limiting hypotension and sedation may hinder its usage. Botox injections are used for minor focal dystonia, but not in more advanced tardive dyskinesia. Benzodiazepines are an effective treatment for TD, however their use is limited by the development of tolerance which requires ever increasing doses of the benzodiazepines to be used to attenuate TD symptoms. The most popular benzodiazepine for the treatment of TD is clonazepam. Vitamin B6 has been reported to be an effective treatment for TD in two randomised double-blind placebo-controlled trials.
In males, the branched-chain amino acid formula Tarvil, containing the amino acids valine, isoleucine, and leucine in a 3:3:4 ratio was reported as beneficial for motor symptoms in a small, non-blinded study.
Treatment of Ramsay Hunt Syndrome Type 1 is specific to individual symptoms. Myoclonus and seizures may be treated with drugs like valproate.
Some have described this condition as difficult to characterize.
The treatment of Tourette's focuses on identifying and helping the individual manage the most troubling or impairing symptoms. Most cases of Tourette's are mild, and do not require pharmacological treatment; instead, psychobehavioral therapy, education, and reassurance may be sufficient. Treatments, where warranted, can be divided into those that target tics and comorbid conditions, which, when present, are often a larger source of impairment than the tics themselves. Not all people with tics have comorbid conditions, but when those conditions are present, they often take treatment priority.
There is no cure for Tourette's and no medication that works universally for all individuals without significant adverse effects. Knowledge, education and understanding are uppermost in management plans for tic disorders. The management of the symptoms of Tourette's may include pharmacological, behavioral and psychological therapies. While pharmacological intervention is reserved for more severe symptoms, other treatments (such as supportive psychotherapy or cognitive behavioral therapy) may help to avoid or ameliorate depression and social isolation, and to improve family support. Educating a patient, family, and surrounding community (such as friends, school, and church) is a key treatment strategy, and may be all that is required in mild cases.
Medication is available to help when symptoms interfere with functioning. The classes of medication with the most proven efficacy in treating tics—typical and atypical neuroleptics including risperidone (trade name Risperdal), ziprasidone (Geodon), haloperidol (Haldol), pimozide (Orap) and fluphenazine (Prolixin)—can have long-term and short-term adverse effects. The antihypertensive agents clonidine (trade name Catapres) and guanfacine (Tenex) are also used to treat tics; studies show variable efficacy, but a lower side effect profile than the neuroleptics. Stimulants and other medications may be useful in treating ADHD when it co-occurs with tic disorders. Drugs from several other classes of medications can be used when stimulant trials fail, including guanfacine (trade name Tenex), atomoxetine (Strattera) and tricyclic antidepressants. Clomipramine (Anafranil), a tricyclic, and SSRIs—a class of antidepressants including fluoxetine (Prozac), sertraline (Zoloft), and fluvoxamine (Luvox)—may be prescribed when a Tourette's patient also has symptoms of obsessive–compulsive disorder. Several other medications have been tried, but evidence to support their use is unconvincing.
Because children with tics often present to physicians when their tics are most severe, and because of the waxing and waning nature of tics, it is recommended that medication not be started immediately or changed often. Frequently, the tics subside with explanation, reassurance, understanding of the condition and a supportive environment. When medication is used, the goal is not to eliminate symptoms: it should be used at the lowest possible dose that manages symptoms without adverse effects, given that these may be more disturbing than the symptoms for which they were prescribed.
Cognitive behavioral therapy (CBT) is a useful treatment when OCD is present, and there is increasing evidence supporting the use of habit reversal (HRT) in the treatment of tics. There is evidence that HRT reduces tic severity, but there are methodological limitations in the studies, and a need for more trained specialists and better large-scale studies.
Relaxation techniques, such as exercise, yoga or meditation, may be useful in relieving the stress that may aggravate tics, but the majority of behavioral interventions (such as relaxation training and biofeedback, with the exception of habit reversal) have not been systematically evaluated and are not empirically supported therapies for Tourette's. Deep brain stimulation has been used to treat adults with severe Tourette's that does not respond to conventional treatment, but it is regarded as an invasive, experimental procedure that is unlikely to become widespread.
, studies on the impact of dietary interventions on the symptoms of Tourette's are scarce and methodologically poor, and a single dietary pattern has not been established. Anecdotal reports suggest that certain dietary interventions may relieve symptoms, such as gluten-free and low-sugar diets.
A complete recovery following immunotherapy and tumor removal. Untreated cases died within few months of onset. Some patients have a poor outcome despite sustained immunosuppression, but that is often related to tumor progression or associated with the presence of Abs directed against intracellular Ags such as GAD Abs or amphyphysin Abs, which can reflect the involvement of an additional cytotoxic T-cell mechanism in the progression of the disease.
Treatment for lateral medullary syndrome involves focusing on relief of symptoms and active rehabilitation to help patients return to their daily activities. Speech Therapy is a very common form of rehabilitation that many patients undergo. Depressed mood and withdrawal from society can be seen in patients following the initial onslaught of symptoms.
In more severe cases, a feeding tube may need to be inserted through the mouth or a gastrostomy may be necessary if swallowing is impaired. In some cases, medication may be used to reduce or eliminate residual pain. Some studies have reported success in mitigating the chronic neuropathic pain associated with the syndrome with anti-epileptics such as gabapentin. Long term treatment generally involves the use of antiplatelets like aspirin or clopidogrel and statin regimen for the rest of their lives in order to minimize the risk of another stroke. Warfarin is used if atrial fibrillation is present. Other medications may be necessary in order to suppress high blood pressure and risk factors associated with strokes. A blood thinner may be prescribed to a patient in order to break up the infarction and reestablish blood flow and to try to prevent future infarctions.
One of the most unusual and difficult to treat symptoms that occur due to Wallenberg syndrome are interminable, violent hiccups. The hiccups can be so severe that patients often struggle to eat, sleep and carry on conversations. Depending on the severity of the blockage caused by the stroke, the hiccups can last for weeks. Unfortunately there are very few successful medications available to mediate the inconvenience of constant hiccups.
For dysphagia symptoms, Repetitive transcranial magnetic stimulation has been shown to assist in rehabilitation. Overall, traditional stroke assessment and outcomes are used to treat patients, since lateral medullary syndrome is often a cause of a stroke in the lateral medulla.
Treatment for this disorder can be disconcerting because some individuals will always have residual symptoms due to the severity of the blockage as well as the location of the infarction. Two patients may present with the same initial symptoms right after the stroke has occurred, but after several months one patient may fully recover while the other is still severely handicapped. This variation in outcome may be due to but not limited to the size of the infarction, the location of the infarction, and how much damage resulted from it.