Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Systemic (intravenous or oral) chemotherapy and intrathecal chemotherapy: Intrathecal therapy is when injection is done directly to the spinal cord into the sub-arachnoid space to avoid the Blood-Brain-Barrier (BBB) and gain direct access to the CSF. Intrathecal Therapy is preferred since intravenous chemotherapy do not penetrate the BBB. The most common chemicals used are liposomal cytarabine (DepoCyte) and intrathecal methotrexate (MTX).
In combination, intrathecal chemotherapy most often comprises methotrexate, cytarabine, thiotepa and steroids. Ventriculoperitoneal shunts may also be applied with chemotherapy to avoid invasive surgery to gain access to the CSF.
An example of treatment:
Intrathecal MTX injection at a dose of 15 mg/day for 5 days every other week with hydrocortisone acetate injecting IT on day one to prevent arachnoiditis, the inflammation of the arachnoid. MTX administration is continued until neurological progression or relapse occurred. Systemic chemotherapy, radiotherapy, and surgery are performed depending on the need of the patient.
Risks of treatments:
Both Chemotherapy and Radiotherapy are harmful to the body and most definitely the brain. Caution must be utilized in treating patients with NM. Another factor that makes treatment difficult is that there is no suitable method to evaluate the disease progression.
There is no standard treatment that has been established for NM thus treatments are almost always palliative.
Radiotherapy:
This method is used mostly for focal type of NM due to the nature of damage and success rate associated with the treatment. Radiotherapy targets and tumor and destroys the collective tissues of cancerous cells.
Treatment options include surgery, radiotherapy, radiosurgery, and chemotherapy.
The infiltrating growth of microscopic tentacles in fibrillary astrocytomas makes complete surgical removal difficult or impossible without injuring brain tissue needed for normal neurological function. However, surgery can still reduce or control tumor size. Possible side effects of surgical intervention include brain swelling, which can be treated with steroids, and epileptic seizures. Complete surgical excision of low grade tumors is associated with a good prognosis. However, the tumor may recur if the resection is incomplete, in which case further surgery or the use of other therapies may be required.
Standard radiotherapy for fibrillary astrocytoma requires from ten to thirty sessions, depending on the sub-type of the tumor, and may sometimes be performed after surgical resection to improve outcomes and survival rates. Side effects include the possibility of local inflammation, leading to headaches, which can be treated with oral medication. Radiosurgery uses computer modelling to focus minimal radiation doses at the exact location of the tumor, while minimizing the dose to the surrounding healthy brain tissue. Radiosurgery may be a complementary treatment after regular surgery, or it may represent the primary treatment technique.
Although chemotherapy for fibrillary astrocytoma improve overall survival, it is effective only in about 20% of cases. Researchers are currently investigating a number of promising new treatment techniques including gene therapy, immunotherapy, and novel chemotherapies.
The treatment for hemangioblastoma is surgical excision of the tumor. Although usually straightforward to carry out, recurrence of the tumor or more tumors at a different site develop in approximately 20% of patients. Gamma Knife Radiosurgery as well as LINAC have also been employed to successfully treat recurrence and control tumor growth of cerebellar hemangioblastomas.
Because ganglioneuromas are benign, treatment may not be necessary, as it would expose patients to more risk than leaving it alone. If there are symptoms or major physical deformity, treatment usually consists of surgery to remove the tumor.
Surgery is not always recommended for syringomyelia patients. For many patients, the main treatment is analgesia. Physicians specializing in pain management can develop a medication and treatment plan to ameliorate pain. Medications to combat any neuropathic pain symptoms such as shooting and stabbing pains (e.g. gabapentin or pregabalin) would be first-line choices. Opiates are usually prescribed for pain for management of this condition. Facet injections are not indicated for treatment of syringomyelia.
Drugs have no curative value as a treatment for syringomyelia. Radiation is used rarely and is of little benefit except in the presence of a tumor. In these cases, it can halt the extension of a cavity and may help to alleviate pain.
In the absence of symptoms, syringomyelia is usually not treated. In addition, a physician may recommend not treating the condition in patients of advanced age or in cases where there is no progression of symptoms. Whether treated or not, many patients will be told to avoid activities that involve straining.
Since the natural history of syringomyelia is poorly understood, a conservative approach may be recommended. When surgery is not yet advised, patients should be carefully monitored. Periodic MRI's and physical evaluations should be scheduled at the recommendation of a qualified physician.
The goal of radiation therapy is to kill tumor cells while leaving normal brain tissue unharmed. In standard external beam radiation therapy, multiple treatments of standard-dose "fractions" of radiation are applied to the brain. This process is repeated for a total of 10 to 30 treatments, depending on the type of tumor. This additional treatment provides some patients with improved outcomes and longer survival rates.
Radiosurgery is a treatment method that uses computerized calculations to focus radiation at the site of the tumor while minimizing the radiation dose to the surrounding brain. Radiosurgery may be an adjunct to other treatments, or it may represent the primary treatment technique for some tumors. Forms used include stereotactic radiosurgery, such as Gamma knife, Cyberknife or Novalis Tx radiosurgery.
Radiotherapy may be used following, or in some cases in place of, resection of the tumor. Forms of radiotherapy used for brain cancer include external beam radiation therapy, the most common, and brachytherapy and proton therapy, the last especially used for children.
Radiotherapy is the most common treatment for secondary brain tumors. The amount of radiotherapy depends on the size of the area of the brain affected by cancer. Conventional external beam "whole-brain radiotherapy treatment" (WBRT) or "whole-brain irradiation" may be suggested if there is a risk that other secondary tumors will develop in the future. Stereotactic radiotherapy is usually recommended in cases involving fewer than three small secondary brain tumors.
People who receive stereotactic radiosurgery (SRS) and whole-brain radiation therapy (WBRT) for the treatment of metastatic brain tumors have more than twice the risk of developing learning and memory problems than those treated with SRS alone.
For recurrent high-grade glioblastoma, recent studies have taken advantage of angiogenic blockers such as bevacizumab in combination with conventional chemotherapy, with encouraging results.
The primary and most desired course of action described in medical literature is surgical removal (resection) via craniotomy. Minimally invasive techniques are becoming the dominant trend in neurosurgical oncology. The prime remediating objective of surgery is to remove as many tumor cells as possible, with complete removal being the best outcome and cytoreduction ("debulking") of the tumor otherwise. In some cases access to the tumor is impossible and impedes or prohibits surgery.
Many meningiomas, with the exception of some tumors located at the skull base, can be successfully removed surgically.
Most pituitary adenomas can be removed surgically, often using a minimally invasive approach through the nasal cavity and skull base (trans-nasal, trans-sphenoidal approach). Large pituitary adenomas require a craniotomy (opening of the skull) for their removal. Radiotherapy, including stereotactic approaches, is reserved for inoperable cases.
Several current research studies aim to improve the surgical removal of brain tumors by labeling tumor cells with 5-aminolevulinic acid that causes them to fluoresce. Postoperative radiotherapy and chemotherapy are integral parts of the therapeutic standard for malignant tumors. Radiotherapy may also be administered in cases of "low-grade" gliomas when a significant tumor burden reduction could not be achieved surgically.
Multiple metastatic tumors are generally treated with radiotherapy and chemotherapy rather than surgery and the prognosis in such cases is determined by the primary tumor, and is generally poor.
Treatment for brain gliomas depends on the location, the cell type, and the grade of malignancy. Often, treatment is a combined approach, using surgery, radiation therapy, and chemotherapy. The radiation therapy is in the form of external beam radiation or the stereotactic approach using radiosurgery. Spinal cord tumors can be treated by surgery and radiation. Temozolomide, a chemotherapeutic drug, is able to cross the blood–brain barrier effectively and is currently being used in therapy for high-grade tumors.
Children with cerebellar pilocytic astrocytoma may experience side effects related to the tumor itself depending on the location and related to the treatment. Strabismus.
- Symptoms related to increased pressure in the brain often disappear after surgical removal of the tumor.
- Effects on coordination and balance improved and might progressively (to completely) disappear as recovery progresses.
- Steroid-treatment is often used to control tissue swelling that may occur pre- and post-operatively.
- Children Diagnosed can also suffer long term side effects due to the type of treatment they may receive.
The most common form of treatment is having the tumor surgically removed however total resection is often not possible. The location could prohibit access to the neoplasm and lead to incomplete or no resection at all. Removal of the tumor will generally allow functional survival for many years. In particular for pilocytic astrocytomas (that are commonly indolent bodies that may permit normal neurologic function) surgeons may decide to monitor the neoplasm's evolution and postpone surgical intervention for some time. However, left unattended these tumors may eventually undergo neoplastic transformation.
If surgery is not possible, recommendations such as chemotherapy or radiation be suggested however side effects from these treatments can be extensive and long term.
The first step after diagnosis is finding a neurosurgeon who is experienced in the treatment of syringomyelia. Surgery is the treatment for syringomyelia. Evaluation of the condition is necessary because syringomyelia can remain stationary for long periods of time, and in some cases progress rapidly.
Surgery of the spinal cord has certain characteristic risks associated with it, and the benefits of a surgical procedure on the spine have to be weighed against the possible complications associated with any procedure. Surgical treatment is aimed at correcting the condition that allowed the syrinx to form. It is vital to bear in mind that the drainage of a syrinx does not necessarily mean the elimination of the syrinx-related symptoms but rather is aimed at stopping progression. In cases involving an Arnold-Chiari malformation, the main goal of surgery is to provide more space for the cerebellum at the base of the skull and upper cervical spine without entering the brain or spinal cord. This often results in flattening or disappearance of the primary syrinx or cavity, over time, as the normal flow of cerebrospinal fluid is restored. If a tumor is causing syringomyelia, removal of the tumor is the treatment of choice, if this is considered to be safe.
Surgery results in stabilization or modest improvement in symptoms for most patients. Delay in treatment may result in irreversible spinal cord injury. Recurrence of syringomyelia after surgery may make additional operations necessary; these may not be completely successful over the long term.
In some patients it may also be necessary to drain the syrinx, which can be accomplished using a catheter, drainage tubes, and valves. This system is also known as a shunt. Shunts are used in both the communicating and noncommunicating forms of the disorder. First, the surgeon must locate the syrinx. Then, the shunt is placed into it with the other end draining cerebrospinal fluid (CSF) into a cavity, usually the abdomen. This type of shunt is called a ventriculoperitoneal shunt and is particularly useful in cases involving hydrocephalus. By draining syrinx fluid, a shunt can arrest the progression of symptoms and relieve pain, headache, and tightness. Syringomyelia shunts are not always successful and can become blocked as with other central nervous system shunts.
The decision to use a shunt requires extensive discussion between doctor and patient, as this procedure carries with it greater risk of injury to the spinal cord, infection, blockage, or hemorrhage and may not necessarily work for all patients. Draining the syrinx more quickly does not produce better outcomes, but a shunt may be required if the fluid in the syrinx is otherwise unable to drain.
In the case of trauma-related syringomyelia, the surgeon operates at the level of the initial injury. The syrinx collapses at surgery, but a tube or shunt is usually necessary to prevent re-expansion.
Treatment begins with maximal surgical removal of the tumor. The addition of radiation to the entire neuraxis and chemotherapy may increase the disease-free survival. Some evidence indicates that proton beam irradiation reduces the impact of radiation on the cochlear and cardiovascular areas and reduces the cognitive late effects of cranial irradiation.
This combination may permit a 5-year survival in more than 80% of cases. The presence of desmoplastic features such as connective tissue formation offers a better prognosis. Prognosis is worse if the child is less than 3 years old, degree of resection is an inadequate , or if any CSF, spinal, supratentorial, or systemic spread occurs. Dementia after radiotherapy and chemotherapy is a common outcome appearing two to four years following treatment. Side effects from radiation treatment can include cognitive impairment, psychiatric illness, bone growth retardation, hearing loss, and endocrine disruption. Increased intracranial pressure may be controlled with corticosteroids or a ventriculoperitoneal shunt.
Chemotherapy is often used as part of treatment. Evidence of benefit, however, is not clear as of 2013. A few different chemotherapeutic regimens for medulloblastoma are used, but most involve a combination of lomustine, cisplatin, carboplatin, vincristine, or cyclophosphamide. In younger patients (less than 3–4 years of age), chemotherapy can delay, or in some cases possibly even eliminate, the need for radiotherapy. However, both chemotherapy and radiotherapy often have long-term toxicity effects, including delays in physical and cognitive development, higher risk of second cancers, and increased cardiac disease risks.
Definitive treatment for ganglioglioma requires gross total surgical resection, and a good prognosis is generally expected when this is achieved. However, indistinct tumor margins and the desire to preserve normal spinal cord tissue, motor and sensory function may preclude complete resection of tumor. According to a series by Lang et al., reviewing several patients with resected spinal cord ganglioglioma, the 5- and 10-year survival rates after total resection were 89% and 83%, respectively. In that study, patients with spinal cord ganglioglioma had a 3.5-fold higher relative risk of tumor recurrence compared to patients with supratentorial ganglioglioma. It has been recognized that postoperative results correlate closely with preoperative neurological status as well as the ability to achieve complete resection.
With the exception of WHO grade III anaplastic ganglioglioma, radiation therapy is generally regarded to have no role in the treatment of ganglioglioma. In fact, radiation therapy may induce malignant transformation of a recurrent ganglioglioma several years later. Adjuvant chemotherapy is also typically reserved for anaplastic ganglioglioma, but has been used anecdotally in partially resected low grade spinal cord gangliogliomas which show evidence of disease progression.
There is no known treatment to reverse nerve damage due to myelomalacia. In some cases, surgery may slow or stop further damage. As motor function degenerates, muscle spasticity and atrophy may occur. Steroids may be prescribed to reduce swelling of the spinal cord, pain, and spasticity.
Research is underway to consider the potential of stem cells for treatment of neurodegenerative diseases. There are, however, no approved stem cell therapies for myelomalacia.
Dexamethasone (a potent glucocorticoid) in doses of 16 mg/day may reduce edema around the lesion and protect the cord from injury. It may be given orally or intravenously for this indication.
Surgery is indicated in localised compression as long as there is some hope of regaining function. It is also occasionally indicated in patients with little hope of regaining function but with uncontrolled pain. Postoperative radiation is delivered within 2–3 weeks of surgical decompression. Emergency radiation therapy (usually 20 Gray in 5 fractions, 30 Gray in 10 fractions or 8 Gray in 1 fraction) is the mainstay of treatment for malignant spinal cord compression. It is very effective as pain control and local disease control. Some tumours are highly sensitive to chemotherapy (e.g. lymphomas, small-cell lung cancer) and may be treated with chemotherapy alone.
Once complete paralysis has been present for more than about 24 hours before treatment, the chances of useful recovery are greatly diminished, although slow recovery, sometimes months after radiotherapy, is well recognised.
The median survival of patients with metastatic spinal cord compression is about 12 weeks, reflecting the generally advanced nature of the underlying malignant disease.
Most ganglioneuromas are noncancerous, thus expected outcome is usually good. However, a ganglioneuroma may become cancerous and spread to other areas, or it may regrow after removal.
If the tumor has been present for a long time and has pressed on the spinal cord or caused other symptoms, it may have caused irreversible damage that cannot be corrected with the surgical removal of the tumor. Compression of the spinal cord may result in paralysis, especially if the cause is not detected promptly.
Surgery
Surgical intervention is warranted in patients who present with new onset neurological signs and symptoms or have a history of progressive neurological manifestations which can be related to this abnormality. The surgical procedure required for the effective treatment of diastematomyelia includes decompression (surgery) of neural elements and removal of bony spur. This may be accomplished with or without resection and repair of the duplicated dural sacs. Resection and repair of the duplicated dural sacs is preferred since the dural abnormality may partly contribute to the "tethering" process responsible for the symptoms of this condition.
Post-myelographic CT scanning provides individualized detailed maps that enable surgical treatment of cervical diastematomyelia, first performed in 1983.
Observation
Asymptomatic patients do not require surgical treatment. These patients should have regular neurological examinations since it is known that the condition can deteriorate. If any progression is identified, then a resection should be performed.
Treatment options are either surgical or non-surgical. Overall evidence is inconclusive whether non-surgical or surgical treatment is the better for lumbar spinal stenosis.
The standard initial treatment is to remove as much of the tumor as possible without worsening neurologic deficits. Radiation therapy has been shown to prolong survival and is a standard component of treatment. There is no proven benefit to adjuvant chemotherapy or supplementing other treatments for this kind of tumor. Although temozolomide is effective for treating recurrent anaplastic astrocytoma, its role as an adjuvant to radiation therapy has not been fully tested.
Quality of life after treatment depends heavily on the area of the brain that housed the tumor. In many cases, patients with anaplastic astrocytoma may experience various types of paralysis, speech impediments, difficulties planning and skewed sensory perception. Most cases of paralysis and speech difficulties can be rehabilitated with speech, occupational, physical, and vision therapy.
Arachnoiditis is difficult to treat and treatment is generally limited to alleviation of pain and other symptoms. While arachnoiditis may not yet be curable and can be significantly life-altering, management of the condition, including with medication, physical therapy, and if appropriate, psychotherapy, can help patients cope with the difficulties it presents. Surgical intervention generally has a poor outcome and may only provide temporary relief, but some cases of surgical success have been reported. Epidural steroid injections to treat sciatic pain have been linked as a "cause" of the disease by the U.S. Food and Drug Administration as well as in other research, and are therefore discouraged as a treatment for Arachnoiditis as they will most likely worsen the condition. Some patients benefit from motorized assistance devices such as the Segway or standing wheelchairs, although these types of devices may be beyond the reach of those with limited means. Standing endurance and vibration tolerance are considered before considering such devices in any case.
The effectiveness of non surgical treatments is unclear as they have not been well studied.
- Education about the course of the condition and how to relieve symptoms
- Medicines to relieve pain and inflammation, such as acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs)
- Exercise, to maintain or achieve overall good health, aerobic exercise, such as riding a stationary bicycle, which allows for a forward lean, walking, or swimming can relieve symptoms
- Weight loss, to relieve symptoms and slow progression of the stenosis
- Physical therapy to support self-care. Also may give instructs on stretching and strength exercises that may lead to a decrease in pain and other symptoms.
- Lumbar epidural steroid or anesthetic injections have low quality evidence to support their use.
The treatment and prognosis of myelopathy depends on the underlying cause: myelopathy caused by infection requires medical treatment with pathogen specific antibiotics. Similarly, specific treatments exist for multiple sclerosis, which may also present with myelopathy. As outlined above, the most common form of myelopathy is secondary to degeneration of the cervical spine. Newer findings have challenged the existing controversy with respect to surgery for cervical spondylotic myelopathy by demonstrating that patients benefit from surgery.