Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Catastrophic antiphospholipid syndrome (CAPS), also known as Asherson's syndrome, is an acute and complex biological process that leads to occlusion of small vessels of various organs. It was first described by Ronald Asherson in 1992. The syndrome exhibits thrombotic microangiopathy, multiple organ thrombosis, and in some cases tissue necrosis and is considered an extreme or catastrophic variant of the antiphospholipid syndrome.
CAPS has a mortality rate of about 50%. With the establishment of a CAPS-Registry more has been learned about this syndrome, but its cause remains unknown. Infection, trauma, medication, and/or surgery can be identified in about half the cases as a "trigger". It is thought that cytokines are activated leading to a cytokine storm with the potentially fatal consequences of organ failure. A low platelet count is a common finding. Individuals with CAPS often exhibit a positive test to antilipid antibodies, typically IgG, and may or may not have a history of lupus or another connective tissue disease. Association with another disease such as lupus is called a secondary APS unless it includes the defining criteria for CAPS.
Clinically, the syndrome affects at least three organs and may affect many organs systems. Peripheral thrombosis may be encountered affecting veins and arteries. Intraabdominal thrombosis may lead to pain. Cardiovascular, nervous, kidney, and lung system complications are common. The affected individual may exhibit skin purpura and necrosis. Cerebral manifestations may lead to encephalopathy and seizures. Myocardial infarctions may occur. Strokes may occur due to the arterial clotting involvement. Death may result from multiple organ failure.
Treatments may involve the following steps:
- Prevention includes the use of antibiotics for infection and parenteral anticoagulation for susceptible patients.
- Specific therapy includes the use of intravenous heparin and corticosteroids, and possibly plasma exchanges, intravenous immunoglobulin.
- Additional steps may have to be taken to manage circulatory problems, kidney failure, and respiratory distress.
- When maintaining survival of the disease treatments also include high doses of Rituxan (Rituximab) to maintain stability.
Autoimmune polyendocrine syndrome type 1 treatment is based on the symptoms that are presented by the affected individual, additionally there is:
- Hormone replacement
- Systemic antifungal treatment
- Immunosuppressive treatment
As there is no known cure, Loeys–Dietz syndrome is a lifelong condition. Due to the high risk of death from aortic aneurysm rupture, patients should be followed closely to monitor aneurysm formation, which can then be corrected with interventional radiology or vascular surgery.
Previous research in laboratory mice has suggested that the angiotensin II receptor antagonist losartan, which appears to block TGF-beta activity, can slow or halt the formation of aortic aneurysms in Marfan syndrome. A large clinical trial sponsored by the National Institutes of Health is currently underway to explore the use of losartan to prevent aneurysms in Marfan syndrome patients. Both Marfan syndrome and Loeys–Dietz syndrome are associated with increased TGF-beta signaling in the vessel wall. Therefore, losartan also holds promise for the treatment of Loeys–Dietz syndrome. In those patients in which losartan is not halting the growth of the aorta, irbesartan has been shown to work and is currently also being studied and prescribed for some patients with this condition.
If an increased heart rate is present, atenolol is sometimes prescribed to reduce the heart rate to prevent any extra pressure on the tissue of the aorta. Likewise, strenuous physical activity is discouraged in patients, especially weight lifting and contact sports.
As of 2017, data on optimal treatment was limited. Therapies with hormones is the standard of care, namely adrenocorticotrophic hormone (ACTH), or oral
corticosteroids such as prednisone. Vigabatrin is also a common consideration, though there is a risk of visual field loss with long term use. The high cost of ACTH leads doctors to avoid it in the US; higher dose prednisone appears to generate equivalent outcomes.
As of 2017 data from clinical trials of the ketogenic diet for treating infantile spams was inconsistent; most trials were as a second-line therapy after failure of drug treatment, and as of 2017 it had not been explored as a first line treatment in an adequately designed clinical trial.
Harlequin syndrome is not debilitating so treatment is not normally necessary. In cases where the individual may feel socially embarrassed, contralateral sympathectomy may be considered, although compensatory flushing and sweating of other parts of the body may occur. In contralateral sympathectomy, the nerve bundles that cause the flushing in the face are interrupted. This procedure causes both sides of the face to no longer flush or sweat. Since symptoms of Harlequin syndrome do not typically impair a person’s daily life, this treatment is only recommended if a person is very uncomfortable with the flushing and sweating associated with the syndrome.
If a contracture is less than 30 degrees, it may not interfere with normal functioning. The common treatment is splinting and occupational therapy. Surgery is the last option for most cases as the result may not be satisfactory.
At the 2005 American Society of Human Genetics meeting, Francis Collins gave a presentation about a treatment he devised for children affected by Progeria. He discussed how farnesyltransferase inhibitor (FTI) affects H-Ras. After his presentation, members of the Costello Syndrome Family Network discussed the possibility of FTIs helping children with Costello syndrome. Mark Kieran, who presented at the 1st International Costello Syndrome Research Symposium in 2007, agreed that FTIs might help children with Costello syndrome. He discussed with Costello advocates what he had learned in establishing and running the Progeria clinical trial with an FTI, to help them consider next steps.
Another medication that affects H-Ras is Lovastatin, which is planned as a treatment for neurofibromatosis type I. When this was reported in mainstream news, the Costello Syndrome Professional Advisory Board was asked about its use in Costello Syndrome. Research into the effects of Lovastatin was linked with Alcino Silva, who presented his findings at the 2007 symposium. Silva also believed that the medication he was studying could help children with Costello syndrome with cognition.
A third medication that might help children with Costello syndrome is a MEK inhibitor that helps inhibit the pathway closer to the cell nucleus.
In terms of treatment of oculocerebrorenal syndrome for those individuals who are affected by this condition includes the following:
- Glaucoma control (via medication)
- Nasogastric tube feeding
- Physical therapy
- Clomipramine
- Potassium citrate
The first line treatment is change of lifestyle (e.g., Dietary Guidelines for Americans and physical activity). However, if in three to six months of efforts at remedying risk factors prove insufficient, then drug treatment is frequently required. Generally, the individual disorders that compose the metabolic syndrome are treated separately. Diuretics and ACE inhibitors may be used to treat hypertension. Cholesterol drugs may be used to lower LDL cholesterol and triglyceride levels, if they are elevated, and to raise HDL levels if they are low. Use of drugs that decrease insulin resistance, e.g., metformin and thiazolidinediones, is controversial; this treatment is not approved by the U.S. Food and Drug Administration. Weight loss medications may result in weight loss. As obesity is often recognized as the culprit behind many of the additional symptoms, with weight loss and lifestyle changes in diet, physical activity, the need for other medications may diminish.
A 2003 study indicated cardiovascular exercise was therapeutic in approximately 31% of cases. The most probable benefit was to triglyceride levels, with 43% showing improvement; but fasting plasma glucose and insulin resistance of 91% of test subjects did not improve.
Many other studies have supported the value of physical activity and dietary modifications to treat metabolic syndrome. Some natural compounds, like ursolic acid, have been suggested as a treatment for obesity/metabolic syndrome based on the results of extensive research involving animal models; it is argued, however, that there is still a lack of data regarding the use of ursolic acid in humans, as phase-II/III trials of that drug have not been carried so far.
Restricting the overall dietary carbohydrate intake is more effective in reducing the most common symptoms of metabolic syndrome than the more commonly prescribed reduction in dietary fat intake.
The combination preparation simvastatin/sitagliptin (marketed as Juvisync) was introduced in 2011 and the use of this drug was to lower LDL levels and as well as increase insulin levels. This drug could have been used to treat metabolic syndrome but was removed from the market by Merck in 2013 due to business reasons.
High-dose statins, recommended to reduce cardiovascular risk, have been associated with higher progression to diabetes, particularly in patients with metabolic syndrome. The biological mechanisms are not entirely understood, however, the plausible explanation may lie in competitive inhibition of glucose transport via the solute carrier (SLC) family of transporters (specifically "SLCO1B1"), important in statin pharmacokinetics.
Some studies on mice suggest that a Time Restricted Diet (TRD) could be helpful in reversing obesity and possibly metabolic syndrome
Treatment for Romano–Ward syndrome can "deal with" the imbalance between the right and left sides of the sympathetic nervous system which may play a role in the cause of this syndrome. The imbalance can be temporarily abolished with a left stellate ganglion block, which shorten the QT interval. If this is successful, surgical ganglionectomy can be performed as a permanent treatment.Ventricular dysrhythmia may be managed by beta-adrenergic blockade (propranolol)
Orofaciodigital syndrome type 1 can be treated with reconstructive surgery or the affected parts of the body. Surgery of cleft palate, tongue nodules, additional teeth, accessory frenulae, and orthodontia for malocclusion. Routine treatment for patients with renal disease and seizures may also be necessary. Speech therapy and special education in the later development may also be used as management.
There is no medical treatment for either syndrome but there are some recommendations that can help with prevention or early identification of some of the problems. Children with either syndrome should have their hearing tested, and adults should be aware that the hearing loss may not develop until the adult years. Yearly visits to an ophthalmologist or other eye care professional who has been informed of the diagnosis of Stickler or Marshall syndrome is important for all affected individuals. Children should have the opportunity to have myopia corrected as early as possible, and treatment for cataracts or detached retinas may be more effective with early identification. Support for the joints is especially important during sports, and some recommend that contact sports should be avoided by those who have very loose joints.
In terms of treatment/management one should observe what signs or symptoms are present and therefore treat those as there is no other current guideline. The affected individual should be monitored for cancer of:
- Thyroid
- Breast
- Renal
Treatment of Roberts syndrome is individualized and specifically aimed at improving the quality of life for those afflicted with the disorder. Some of the possible treatments include: surgery for the cleft lip and palate, correction of limb abnormalities (also through surgery), and improvement in prehensile hand grasp development.
Bloom syndrome has no specific treatment; however, avoiding sun exposure and using sunscreens can help prevent some of the cutaneous changes associated with photo-sensitivity. Efforts to minimize exposure to other known environmental mutagens are also advisable.
Café au lait spots can be removed with lasers. Results are variable as the spots are often not completely removed or can come back after treatment. Often, a test spot is treated first to help predict the likelihood of treatment success.
Medical management of children with Trisomy 13 is planned on a case-by-case basis and depends on the individual circumstances of the patient. Treatment of Patau syndrome focuses on the particular physical problems with which each child is born. Many infants have difficulty surviving the first few days or weeks due to severe neurological problems or complex heart defects. Surgery may be necessary to repair heart defects or cleft lip and cleft palate. Physical, occupational, and speech therapy will help individuals with Patau syndrome reach their full developmental potential. Surviving children are described as happy and parents report that they enrich their lives. The cited study grouped Edwards syndrome, which is sometimes survivable beyond toddlerhood, along with Patau, hence the median age of 4 at the time of data collection.
Surgery is typically used to correct structural heart defects and syndactyly. Propanolol or beta-adrenergic blockers are often prescribed as well as insertion of a pacemaker to maintain proper heart rhythm. With the characterization of Timothy syndrome mutations indicating that they cause defects in calcium currents, it has been suggested that calcium channel blockers may be effective as a therapeutic agent.
There are two lines of treatment for Pisa syndrome. The first line entails discontinuation or reduction in dose of the antipsychotic drug(s). The second line of treatment is an anticholinergic medication. A pharmacological therapy for Pisa syndrome caused by prolonged use of antipsychotic drugs has not been established yet.
Treatment of Aicardi syndrome primarily involves management of seizures and early/continuing intervention programs for developmental delays.
Additional comorbidities and complications sometimes seen with Aicardi syndrome include porencephalic cysts and hydrocephalus, and gastro-intestinal problems. Treatment for porencephalic cysts and/or hydrocephalus is often via a shunt or endoscopic of the cysts, though some require no treatment. Placement of a feeding tube, fundoplication, and surgeries to correct hernias or other gastrointestinal structural problems are sometimes used to treat gastro-intestinal issues.
In August 2016, researchers at the Instituto de Assistência dos Servidores do Estado do Rio de Janeiro used botulinum toxin as a method to block the acetylcholine release from the presynaptic neurons. Although they have seen a reduction in one sided flushing, sweating still occurs.
There have been case studies of individuals whom have experienced this syndrome after an operation. Two patients, a 37-year-old and 58-year-old female patients suffering from metastatic cancer were scheduled for placement of an intrathecal pump drug delivery system. After the intrathecal pump was placed, certain medications were given to the patients. Once the medications were administered, both patients had one sided facial flushes, closely resembling Harlequin Syndrome. Patients were given neurological exams to confirm that their nerves were still intact. An MRI was performed and showed no significant evidence of bleeding or nerve compression. After close observation for 16 hours, symptoms of the Harlequin syndrome was diminished and both patients did not have another episode.
Another case study was based on a 6-year-old male visiting an outpatient setting for one sided flushes during or after physical activity or exposed to heat. Vitals, laboratory tests, and CT scans were normal. Along with the flushes, the right pupil was 1.5 mm in size, while the left pupil was 2.5 mm in size; however, no ptosis, miosis, or enophthalmos was noted. The patient also had an MRI scan to rule out any lesion near the brain or spinal cord. No abnormalities were noted and the patient did not receive any treatments. The patient was diagnosed with idiopathic Harlequin syndrome.
Although the mechanism is still unclear, the pathophysiology of this condition, close monitoring, and reassurance are vital factors for successful management.
The treatment of Muenke syndrome is focused on the correction of the abnormal skull shape and mirrors the treatment of coronal craniosynostosis. The abnormal growth patterns continue throughout the growing years; therefore, intervention, accurate diagnosis, and a customized, expertly carried-out treatment plan should be a primary concern. The treatment of Muenke syndrome is focused on correction of the abnormal skull shape and mirrors the treatment of non-syndromic coronal craniosynostosis. Although the timing of surgery can be highly individualized, surgical correction of the bicoronal craniosynostosis is most often done between 6 and 12 months of age. Surgery is usually performed through a scalp incision that lies concealed within the hair of the head. Your craniofacial surgeon will work in concert with a pediatric neurosurgeon in order to safely remove the bones of the skull. Then, the craniofacial surgeon reshapes and repositions those bones to give a more normal skull shape.
Many professionals that are likely to be involved in the treatment of those with Stickler's syndrome, include anesthesiologists, oral and maxillofacial surgeons; craniofacial surgeons; ear, nose, and throat specialists, ophthalmologists, optometrists, audiologists, speech pathologists, physical therapists and rheumatologists.
Although the exact etiopathogenetic mechanism of Ballantyne syndrome remains unknown, several authors have reported raised uric acid levels, anemia, and low hematocrit without hemolysis.
Reducing the dosage of the antipsychotic drugs resulted in gradual improvement in the abnormal posture. In some cases, discontinuing the use of those drugs resulted in complete disappearance of the syndrome. The time it took for the improvement and the disappearance of the syndrome depended on the type of drug being administered or the specific cause of the syndrome itself.