Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The goal of treatment in Panner disease is to relieve pain. Treatment for Panner Disease is very minimal because in most children the bones repair their blood supply and rebuild themselves and this leads to the rebuilding of the growth plate and the capitellum returns to its normal shape. The period of rebuilding and regrowth varies from child to child and can last anywhere between weeks to several months. To relieve the pain, the child is restricted from participating in sports and activities until the elbow is healed and to also rest the affected elbow. Rest will allow for the pain to be relieved and return of full elbow movement. It may also be recommended for children to apply an icepack or heat to the elbow to alleviate pain and swelling. If the child has great difficulty bending and straightening the arm then physical therapy may also be recommend. Occasionally, it is recommended for children to use nonsteroidal anti-inflammatory drugs (NSAIDs) or acetaminophen to also reduce pain and swelling. For treatment, Panner Disease heals well in children with rest and restriction of physical activity and sports using the affected arm. The prognosis is also good with treatment and the affected capitellum is remodeled. Irregularities of the capitellum and surrounding elbow area can both be seen by radiograph and MRI. When treatment is effective the flattened and fragmented capitellum is completely remodeled and returns to its normal circular shape, and also the high intensity signal on a MRI T2 series disappears. These results indicate that the capitellum is completely remodeled and the child is able to return to normal physical and sports activities.
The goals of treatment are to decrease pain, reduce the loss of hip motion, and prevent or minimize permanent femoral head deformity so that the risk of developing a severe degenerative arthritis as adult can be reduced. Assessment by a pediatric orthopaedic surgeon is recommended to evaluate risks and treatment options. Younger children have a better prognosis than older children.
Treatment has historically centered on removing mechanical pressure from the joint until the disease has run its course. Options include traction (to separate the femur from the pelvis and reduce wear), braces (often for several months, with an average of 18 months) to restore range of motion, physiotherapy, and surgical intervention when necessary because of permanent joint damage. To maintain activities of daily living, custom orthotics may be used. Overnight traction may be used in lieu of walking devices or in combination. These devices internally rotate the femoral head and abduct the leg(s) at 45°. Orthoses can start as proximal as the lumbar spine, and extend the length of the limbs to the floor. Most functional bracing is achieved using a waist belt and thigh cuffs derived from the Scottish-Rite orthosis. These devices are typically prescribed by a physician and implemented by an orthotist. Clinical results of the Scottish Rite orthosis have not been good according to some studies, and its use has gone out of favor. Many children, especially those with the onset of the disease before age 6, need no intervention at all and are simply asked to refrain from contact sports or games which impact the hip. For older children (onset of Perthes after age 6), the best treatment option remains unclear. Current treatment options for older children over age 8 include prolonged periods without weight bearing, osteotomy (femoral, pelvic, or shelf), and the hip distraction method using an external fixator which relieves the hip from carrying the body's weight. This allows room for the top of the femur to regrow. The Perthes Association has a "library" of equipment which can be borrowed to assist with keeping life as normal as possible, newsletters, a helpline, and events for the families to help children and parents to feel less isolated.
While running and high-impact sports are not recommended during treatment for Perthes disease, children can remain active through a variety of other activities that limit mechanical stress on the hip joint. Swimming is highly recommended, as it allows exercise of the hip muscles with full range of motion while reducing the stress to a minimum. Cycling is another good option as it also keeps stress to a minimum. Physiotherapy generally involves a series of daily exercises, with weekly meetings with a physiotherapist to monitor progress. These exercises focus on improving and maintaining a full range of motion of the femur within the hip socket. Performing these exercises during the healing process is essential to ensure that the femur and hip socket have a perfectly smooth interface. This will minimize the long-term effects of the disease. Use of bisphosphonate such as zoledronate or ibandronate is currently being investigated, but definite recommendations are not yet available.
Perthes disease is self-limiting, but if the head of femur is left deformed, long-term problems can occur. Treatment is aimed at minimizing damage while the disease runs its course, not at 'curing' the disease. It is recommended not to use steroids or alcohol as these reduce oxygen in the blood which is needed in the joint. As sufferers age, problems in the knee and back can arise secondary to abnormal posture and stride adopted to protect the affected joint. The condition is also linked to arthritis of the hip, though this appears not to be an inevitable consequence. Hip replacements are relatively common as the already damaged hip suffers routine wear; this varies by individual, but generally is required any time after age 50.
Conservative therapies include NSAIDs, pain medication, weight management and exercise restriction. The problems with these therapies is that they do not work well, especially long-term.
Non-specific treatments include:
- Non-steroidal anti-inflammatory drugs (NSAIDs): ibuprofen, naproxen or aspirin
- Heat or ice
- A counter-force brace or "elbow strap" to reduce strain at the elbow epicondyle, to limit pain provocation and to protect against further damage.
Before anesthetics and steroids are used, conservative treatment with an occupational therapist may be attempted. Before therapy can commence, treatment such as the common rest, ice, compression and elevation (R.I.C.E.) will typically be used. This will help to decrease the pain and inflammation; rest will alleviate discomfort because golfer's elbow is an overuse injury. The patient can use a tennis elbow splint for compression. A pad can be placed anteromedially on the proximal forearm. The splint is made in 30–45 degrees of elbow flexion. A daytime elbow pad also may be useful, by limiting additional trauma to the nerve.
Therapy will include a variety of exercises for muscle/tendon reconditioning, starting with stretching and gradual strengthening of the flexor-pronator muscles. Strengthening will slowly begin with isometrics and progresses to eccentric exercises helping to extend the range of motion back to where it once was. After the strengthening exercises, it is common for the patient to ice the area.
Simple analgesic medication has a place, as does more specific treatment with oral anti-inflammatory medications (NSAIDs). These will help control pain and any inflammation. A more invasive treatment is the injection into and around the inflamed and tender area of a long-acting glucocorticoid (steroid) agent. After causing an initial exacerbation of symptoms lasting 24 to 48 hours, this may produce an improvement of the condition in some five to seven days.
The ulnar nerve runs in the groove between the medial humeral epicondyle and the olecranon process of the ulna. It is most important that this nerve should not be damaged accidentally in the process of injecting a golfer's elbow.
If all else fails, epicondylar debridement (a surgery) may be effective. The ulnar nerve may also be decompressed surgically.
If the appropriate remediation steps are taken - rest, ice, and rehabilitative exercise and stretching - recovery may follow. Few patients will need to progress to steroid injection, and less than 10% will require surgical intervention.
Impingement syndrome is usually treated conservatively, but sometimes it is treated with arthroscopic surgery or open surgery. Conservative treatment includes rest, cessation of painful activity, and physical therapy. Physical therapy treatments would typically focus at maintaining range of movement, improving posture, strengthening shoulder muscles, and reduction of pain. Physical therapists may employ the following treatment techniques to improve pain and function: joint mobilization, interferential therapy, accupuncture, soft tissue therapy, therapeutic taping, rotator cuff strengthening, and education regarding the cause and mechanism of the condition. NSAIDs and ice packs may be used for pain relief.
Therapeutic injections of corticosteroid and local anaesthetic may be used for persistent impingement syndrome. The total number of injections is generally limited to three due to possible side effects from the corticosteroid. A recent systematic review of level one evidence, showed corticoestroid injections only give small and transient pain relief.
A number of surgical interventions are available, depending on the nature and location of the pathology. Surgery may be done arthroscopically or as open surgery. The impinging structures may be removed in surgery, and the subacromial space may be widened by resection of the distal clavicle and excision of osteophytes on the under-surface of the acromioclavicular joint. Damaged rotator cuff muscles can be surgically repaired.
In cases of a minor deviation of the wrist, treatment by splinting and stretching alone may be a sufficient approach in treating the radial deviation in RD. Besides that, the parent can support this treatment by performing passive exercises of the hand. This will help to stretch the wrist and also possibly correct any extension contracture of the elbow. Furthermore, splinting is used as a postoperative measure trying to avoid a relapse of the radial deviation.
Although the exact cause of Panner Disease is unknown, in recent research, it has been concluded that it may be associated with frequent throwing or other athletic activity. In the same article that talks about varying osteochondrosis diseases, it is pointed out that Panner Disease always involves alteration of the capitellum, which can be visualized by radiography. In another research article, the research team aimed to summarize the best available evidence for diagnosis and treatment for Panner Disease. In the article it was found that the most common symptoms that patients with Panner Disease present with are elbow stiffness and swelling, limited range of motion, and limited elbow extension. In alignment with the previously mentioned article, the team of researchers also concluded that Panner Disease involves irregularity of the capitellum, specifically that it appears flattened. Panner Disease often gets misdiagnosed as osteochondritis dissecans (OCD), and in this article they distinguish the difference between the two diseases are age difference and radiographic findings. In alignment with the two previously discussed articles, another article that reports on three case studies of Panner Disease, states that the primary treatment that is used for Panner Disease is rest and restriction from all physical and athletic activity that involves the use of the upper extremities; the activity is suggested to be ceased until the symptoms are relieved.
The disease can be treated with external in-situ pinning or open reduction and pinning. Consultation with an orthopaedic surgeon is necessary to repair this problem. Pinning the unaffected side prophylactically is not recommended for most patients, but may be appropriate if a second SCFE is very likely.
Once SCFE is suspected, the patient should be non-weight bearing and remain on strict bed rest. In severe cases, after enough rest the patient may require physical therapy to regain strength and movement back to the leg. A SCFE is an orthopaedic emergency, as further slippage may result in occlusion of the blood supply and avascular necrosis (risk of 25 percent). Almost all cases require surgery, which usually involves the placement of one or two pins into the femoral head to prevent further slippage. The recommended screw placement is in the center of the epiphysis and perpendicular to the physis. Chances of a slippage occurring in the other hip are 20 percent within 18 months of diagnosis of the first slippage and consequently the opposite unaffected femur may also require pinning.
The risk of reducing this fracture includes the disruption of the blood supply to the bone. It has been shown in the past that attempts to correct the slippage by moving the head back into its correct position can cause the bone to die. Therefore the head of the femur is usually pinned 'as is'. A small incision is made in the outer side of the upper thigh and metal pins are placed through the femoral neck and into the head of the femur. A dressing covers the wound.
Diagnosis is through x-rays, arthroscopy or CT (computed tomography). In cases with significant lameness, surgery is the best option, especially with UAP. However, conservative treatment is often enough for cases of FMCP and OCD of the medial humeral epicondyle. The dogs are exercised regularly and given pain medication, and between the ages of 12 to 18 months the lameness will often improve or disappear. Control of body weight is important in all cases of elbow dysplasia, and prevention of quick growth spurts in puppies may help to prevent the disease.
Surgery for FMCP consists of removal of cartilage and bone fragments and correction of any incongruity of the joint. Reattachment of UAP with a screw is usually attempted before the age of 24 weeks, and after that age the typical treatment is removal of the UAP. Without surgery, UAP rapidly progresses to osteoarthritis, but with FMCP osteoarthritis typically occurs with or without surgery. Osteoarthritis is also a common sequela of OCD of the humerus despite medical or surgical treatment. Elbow replacement surgery has been developed and can be an option for treatment
Prevention of the condition requires restoration of blood flow after injury and reduction of compartmental pressure on the muscles. Any splints, bandages, or other devices that might be obstructing circulation must be removed. A fasciotomy may be required to reduce pressure in the muscle compartment. If the contracture occurs, surgery to release the fixed tissues may help with the deformity and function of the hand.
More severe types (Bayne type III en IV) of radial dysplasia can be treated with surgical intervention. The main goal of centralization is to increase hand function by positioning the hand over the distal ulna, and stabilizing the wrist in straight position. Splinting or soft-tissue distraction may be used preceding the centralization.
In classic centralization central portions of the carpus are removed to create a notch for placement of the ulna. A different approach is to place the metacarpal of the middle finger in line with the ulna with a fixation pin.
If radial tissues are still too short after soft-tissue stretching, soft tissue release and different approaches for manipulation of the forearm bones may be used to enable the placement of the hand onto the ulna. Possible approaches are shortening of the ulna by resection of a segment, or removing carpal bones. If the ulna is significantly bent, osteotomy may be needed to straighten the ulna. After placing the wrist in the correct position, radial wrist extensors are transferred to the extensor carpi ulnaris tendon, to help stabilize the wrist in straight position. If the thumb or its carpometacarpal joint is absent, centralization can be followed by pollicization. Postoperatively, a long arm plaster splinter has to be worn for at least 6 to 8 weeks. A removable splint is often worn for a long period of time.
Radial angulation of the hand enables patients with stiff elbows to reach their mouth for feeding; therefore treatment is contraindicated in cases of extension contracture of the elbow. A risk of centralization is that the procedure may cause injury to the ulnar physis, leading to early epiphyseal arrest of the ulna, and thereby resulting in an even shorter forearm. Sestero et al. reported that ulnar growth after centralization reaches from 48% to 58% of normal ulnar length, while ulnar growth in untreated patients reaches 64% of normal ulnar length. Several reviews note that centralization can only partially correct radial deviation of the wrist and that studies with longterm follow-up show relapse of radial deviation.
Management of this disorder focuses on restoring joint movement and reducing shoulder pain, involving medications, physical therapy, and/or surgical intervention. Treatment may continue for months, there is no strong evidence to favor any particular approach.
Medications frequently used include NSAIDs; corticosteroids are used in some cases either through local injection or systemically. Manual therapists like osteopaths, chiropractors and physiotherapists may include massage therapy and daily extensive stretching. Another osteopathic technique used to treat the shoulder is called the Spencer technique.
If these measures are unsuccessful, manipulation of the shoulder under general anesthesia to break up the adhesions is sometimes used. Hydrodilatation or distension arthrography is controversial. Surgery to cut the adhesions (capsular release) may be indicated in prolonged and severe cases; the procedure is usually performed by arthroscopy. Surgical evaluation of other problems with the shoulder, e.g., subacromial bursitis or rotator cuff tear may be needed.
This method is indicated for cases when open reduction and internal fixation is unlikely to be successful. For example: extensive comminutions, elderly patients with osteoporotic bone, and small or non-union fractures.
Most olecranon fractures are displaced and are best treated surgically:
Anti-inflammatory medicines such as aspirin, naproxen or ibuprofen among others can be taken to help with pain. In some cases the physical therapist will use ultrasound and electrical stimulation, as well as manipulation. Gentle stretching and strengthening exercises are added gradually. If there is no improvement, the doctor may inject a corticosteroid medicine into the space under the acromion. However, recent level one evidence showed limited efficacy of corticosteroid injections for pain relief. While steroid injections are a common treatment, they must be used with caution because they may lead to tendon rupture. If there is still no improvement after 6 to 12 months, the doctor may perform either arthroscopic or open surgery to repair damage and relieve pressure on the tendons and bursae.
In those with calcific tendinitis of the shoulder high energy extracorporeal shock-wave therapy can be useful. It is not useful in other types of tendonitis.
Early on arthritis of the shoulder can be managed with mild analgesics and gentle exercises.
Known gentle exercises include warm water therapy pool exercises that are provided by a trained and licensed physical therapist; approved land exercises to assure free movement of the arthritic area; cortisone injections (administered at the minimum of every six months according to orthopedic physicians) to reduce inflammation; ice and hot moist pact application are very effective. Moist heat is preferred over ice whereas ice is preferred if inflammation occurs during the daytime hours. Local analgesics along with ice or moist heat are adequate treatments for acute pain.
In the case of rheumatoid arthritis, specific medications selected by a rheumatologist may offer substantial relief.
When exercise and medication are no longer effective, shoulder replacement surgery for arthritis may be considered. In this operation, a surgeon replaces the shoulder joint with an artificial ball for the top of the humerus and a cap (glenoid) for the scapula. Passive shoulder exercises (where someone else moves the arm to rotate the shoulder joint) are started soon after surgery. Patients begin exercising on their own about 3 to 6 weeks after surgery. Eventually, stretching and strengthening exercises become a major part of the rehabilitation programme. The success of the operation often depends on the condition of rotator cuff muscles prior to surgery and the degree to which the patient follows the exercise programme.
In young and active patients a partial shoulder replacement with a non-prosthetic glenoid arthroplasty may also be a consideration .
Prompt medical treatment should be sought for suspected dislocation.
Usually, the shoulder is kept in its current position by use of a splint or sling. A pillow between the arm and torso may provide support and increase comfort. Strong analgesics are needed to allay the pain of a dislocation and the distress associated with it.
Shoulder reduction may be accomplished with a number of techniques including traction-countertraction, external rotation, scapular manipulation, Stimson technique, Cunningham technique, or Milch technique. Pain can be managed during the procedures either by procedural sedation and analgesia or injected lidocaine into the shoulder joint. Injecting lidocaine into the joint may be less expensive and faster. If a shoulder cannot be relocated in the emergency room, relocation in the operating room maybe required. This situation occurs in about 7% of cases.
The choice of surgical versus non-surgical treatments for osteochondritis dissecans is controversial. Consequently, the type and extent of surgery necessary varies based on patient age, severity of the lesion, and personal bias of the treating surgeon—entailing an exhaustive list of suggested treatments. A variety of surgical options exist for the treatment of persistently symptomatic, intact, partially detached, and completely detached OCD lesions. Post-surgery reparative cartilage is inferior to healthy hyaline cartilage in glycosaminoglycan concentration, histological, and immunohistochemical appearance. As a result, surgery is often avoided if non-operative treatment is viable.
To prevent the problem, a common recommendation is to keep the shoulder joint fully moving to prevent a frozen shoulder. Often a shoulder will hurt when it begins to freeze. Because pain discourages movement, further development of adhesions that restrict movement will occur unless the joint continues to move full range in all directions (adduction, abduction, flexion, rotation, and extension). Physical therapy and occupational therapy can help with continued movement.
If the fracture is small, it is usually sufficient to treat with rest and support bandage, but in more severe cases, surgery may be required. Ice may be used to relieve swelling.
Displaced avulsion fractures are best managed by either open reduction and internal fixation or closed reduction and pinning. Open reduction (using surgical incision) and internal fixation is used when pins, screws, or similar hardware is needed to fix the bone fragment.
Treatment options include modified activity with or without weight bearing; immobilization; cryotherapy; anti-inflammatory medication; drilling of subchondral bone; microfracture; removal or reattachment of loose bodies; mosaicplasty and osteoarticular transfer system (OATS) procedures. The primary goals of treatment are:
1. Enhance the healing potential of subchondral bone;
2. Fix unstable fragments while maintaining joint congruity; and
3. Replace damaged bone and cartilage with implanted tissues or cells that can grow cartilage.
The articular cartilage's capacity for repair is limited: partial-thickness defects in the articular cartilage do not heal spontaneously, and injuries of the articular cartilage which fail to penetrate subchondral bone tend to lead to deterioration of the articular surface. As a result, surgery is often required in even moderate cases where the osteochondral fragment has not detached from the bone (Anderson Stage II, III).
Surgical rehabilitation is vital, progressive and supervised. The first phase focusses on early motion and usually occupies post-surgical weeks one through three. Passive range of motion is restored in the shoulder, elbow, forearm, and wrist joints. However, while manual resistance exercises for scapular protraction, elbow extension, and pronation and supination are encouraged, elbow flexion resistance is avoided because of the biceps contraction that it generates and the need to protect the labral repair for at least six weeks. A sling may be worn, as needed, for comfort.
Phase 2, occupying weeks 4 through 6, involves progression of strength and range of motion, attempting to achieve progressive abduction and external rotation in the shoulder joint.
Phase 3, usually weeks 6 through 10, permits elbow flexion resistive exercises, now allowing the biceps to come into play on the assumption that the labrum will have healed sufficiently to avoid injury.
Thereafter, isokinetic exercises may be commenced from weeks 10 through 12 to 16, for advanced strengthening leading to return to full activity based on post surgical evaluation, strength, and functional range of motion. The periods of isokinetics through final clearance are sometimes referred to as phases four and five.
The aim of treatment is to minimize pain and to restore as much normal function as possible. Most humerus fractures do not require surgical intervention. One-part and two-part proximal fractures can be treated with a collar and cuff sling, adequate pain medicine, and follow up therapy. Two-part proximal fractures may require open or closed reduction depending on neurovascular injury, rotator cuff injury, dislocation, likelihood of union, and function. For three- and four-part proximal fractures, standard practice is to have open reduction and internal fixation to realign the separate parts of the proximal humerus. A humeral hemiarthroplasty may be required in proximal cases in which the blood supply to the region is compromised. Fractures of the humerus shaft and distal part of the humerus are most often uncomplicated, closed fractures that require nothing more than pain medicine and wearing a cast or sling for a few weeks. In shaft and distal cases in which complications such as damage to the neurovascular bundle exist, then surgical repair is required.
A cubitus varus deformity is more cosmetic than limiting of any function, however internal rotation of the radius over the ulna may be limited due to the overgrowth of the humerus. This may be noticeable during an activity such as using a computer mouse.