Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In the absence of cartilage damage, pain at the front of the knee due to overuse can be managed with a combination of RICE (rest, ice, compression, elevation), anti-inflammatory medications, and physiotherapy.
Usually chondromalacia develops without swelling or bruising and most individuals benefit from rest and adherence to an appropriate physical therapy program. Allowing inflammation to subside while avoiding irritating activities for several weeks is followed by a gradual resumption. Cross-training activities such as swimming, strokes other than the breaststroke, can help to maintain general fitness and body composition. This is beneficial until a physical therapy program emphasizing strengthening and flexibility of the hip and thigh muscles can be undertaken. Use of nonsteroidal anti-inflammatory medication is also helpful to minimize the swelling amplifying patellar pain. Treatment with surgery is declining in popularity due to positive non-surgical outcomes and the relative ineffectiveness of surgical intervention.
Steroid injections are helpful in the short term (first approximately 4 weeks) however, their long term effectiveness is not known, and quality of evidence for its use remains poor and controversial.
Other, more conservative and non-surgical, treatment options available for the management and treatment of tendinopathy include: rest, ice, massage therapy, eccentric exercise, NSAIDs, ultrasound therapy, LIPUS, electrotherapy, taping, sclerosing injections, blood injection, glyceryl trinitrate patches, and (ESWT) extracorporeal shockwave therapy. Studies with a rat model of fatigue-damaged tendons suggested that delaying exercise until after the initial inflammatory stage of repair could promote remodelling more rapidly. There is insufficient evidence on the routine use of injection therapies (Autologous blood, Platelet-rich plasma, Deproteinised haemodialysate, Aprotinin, Polysulphated glycosaminoglycan, Corticosteroid, Skin derived fibroblasts etc.) for treating Achilles tendinopathy. As of 2014 there was insufficient evidence to support the use of platelet-rich therapies for treating musculoskeletal soft tissue injuries such as ligament, muscle and tendon tears and tendinopathies.
Plica syndrome treatment focuses on decreasing inflammation of the synovial capsule. A nonsteroidal anti-inflammatory drug (NSAID) is often used in conjunction with therapeutic exercise and modalities. Iontophoresis and phonophoresis have been utilized successfully against inflammation of the plica and synovial capsule. Failing these, surgical removal of the plica of the affected knee may be necessary.
As patellofemoral pain syndrome is the most common cause of anterior knee pain in the outpatient, a variety of treatments for patellofemoral pain syndrome are implemented. Most patients with patellofemoral pain syndrome respond well to conservative therapy.
Treatment is generally conservative with rest, ice, and specific exercises being recommended. Simple pain killers may be used if required such as acetaminophen (paracetamol) or ibuprofen. Typically symptoms resolve as the growth plate closes. Physiotherapy is generally recommended once the initial symptoms have improved to prevent recurrence. Surgery may rarely be used in those who have stopped growing yet still have symptoms.
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat PFPS, however there is only very limited evidence that they are effective. NSAIDs may reduce pain in the short term, overall however, after three months pain is not improved. There is no evidence that one type of NSAID is superior to another in PFPS, and therefore some authors have recommended that the NSAID with fewest side effects and which is cheapest should be used.
Glycosaminoglycan polysulfate (GAGPS) inhibits proteolytic enzymes and increases synthesis and degree of polymerization of hyaluronic acid in synovial fluid. There is contradictory evidence that it is effective in PFPS.
Early stages may be treated conservatively using the R.I.C.E methods.
1. Rest
2. Ice
3. Compression
4. Elevation
Exercises involving eccentric muscle contractions of the quadriceps on a decline board are strongly supported by extant literature. A physical therapist may also recommend specific exercises and stretches to strengthen the muscles and tendons, eg. cycling or swimming. Use of a strap for jumper's knee and suspension inlays for shoes may also reduce the problems.
Should this fail, autologous blood injection, or platelet-rich plasma injection may be performed and is typically successful though not as successful as high volume saline injection (Crisp "et al."). Uncommonly it may require surgery to remove myxoid degeneration in the tendon. This is reserved for patients with debilitating pain for 6–12 months despite conservative measures. Novel treatment modalities targeting the abnormal blood vessel growth which occurs in the condition are currently being investigated.
New research shows that knee operations in most cases have no better effects than exercise programs, and that most knee operations thus can be avoided.
One of the main ways to prevent OSD is to check the participant's flexibility in their quadriceps and hamstrings. Lack of flexibility in these muscles can be direct risk indicator for OSD. Muscles can shorten, which can cause pain but this is not permanent. Stretches can help reduce shortening of the muscles. The main stretches for prevention of OSD focus on the hamstrings and quadriceps.
Two types of treatment options are typically available:
- Surgery
- Conservative treatment (rehabilitation and physical therapy)
Surgery may impede normal growth of structures in the knee, so doctors generally do not recommend knee operations for young people who are still growing. There are also risks of complications, such as an adverse reaction to anesthesia or an infection.
When designing a rehabilitation program, clinicians consider associated injuries such as chipped bones or soft tissue tears. Clinicians take into account the person's age, activity level, and time needed to return to work and/or athletics. Doctors generally only recommend surgery when other structures in the knee have sustained severe damage, or specifically when there is:
- Concurrent osteochondral injury
- Continued gross instability
- Palpable disruption of the medial patellofemoral ligament and the vastus medialis obliquus
- High-level athletic demands coupled with mechanical risk factors and an initial injury mechanism not related to contact
Supplements like glucosamine and NSAIDs can be used to minimize bothersome symptoms.
An effective rehabilitation program reduces the chances of reinjury and of other knee-related problems such as patellofemoral pain syndrome and osteoarthritis. Rehabilitation focuses on maintaining strength and range of motion to reduce pain and maintain the health of the muscles and tissues around the knee joint.
Although surgery has a role in repairing traumatic injuries and broken bones, surgeries such as arthroscopic lavage do not provide significant or lasting improvements to either pain or function to people with degenerative knee pain, and therefore should almost never be performed. Degenerative knee pain is pain caused by wear and tear, such as osteoarthritis or a meniscal tear. Effective treatments for degenerative knee pain include physical therapy exercises, pain-reducing drugs such as ibuprofen, knee replacement surgery, and weight loss in people who are overweight.
Undisplaced fracture can usually be treated by casting. Even some displaced fractures can be treated with casting as long as a person can straighten their leg without help. Typically the leg is immobilized in a straight position for the first three weeks and then increasing degrees of bending are allowed.
Treatment may be with or without surgery, depending on the type of fracture.
With rest and quadriceps flexibility exercises the condition settles with no secondary disability. Sometimes, if the condition does not settle, calcification appears in the ligament. This condition is comparable to Osgood-Schlatter’s disease and usually recovers spontaneously. If rest fails to provide relief, the abnormal area is removed and the paratenon is stripped.
Treatment of medial knee injuries varies depending on location and classification of the injuries. The consensus of many studies is that isolated grade I, II, and III injuries are usually well suited to non-operative treatment protocols. Acute grade III injuries with concomitant multiligament injuries or knee dislocation involving medial side injury should undergo surgical treatment. Chronic grade III injuries should also undergo surgical treatment if the patient is experiencing rotational instability or side-to-side instability.
Knee MRIs should be avoided for knee pain without symptoms or effusion, unless there are non-successful results from a functional rehabilitation program.
Treatment of the unhappy triad usually requires surgery. An ACL surgery is common and the meniscus can be treated during the surgery as well. The MCL is rehabilitated through time and immobilization. Physical therapy after the surgery and the use of a knee brace help speed up the healing process.
A typical surgery for a blown knee includes:
- Patellar tendon autograft (An autograft is a graft that comes from the patient)
- Hamstring tendon autograft
- Quadriceps tendon autograft
- Allograft (taken from a cadaver) patellar tendon, Achilles tendon, semitendinosus, gracilis, or posterior tibialis tendon
The goal of reconstruction surgery is to prevent instability and restore the function of the torn ligament, creating a stable knee. There are certain factors that the patient must consider when deciding for or against surgery.
Persons with knock knees often have collapsed inner arches of their feet, and their inner ankle bones are generally lower than their outer ankle bones. Adults with uncorrected genu valgum are typically prone to injury and chronic knee problems such as chondromalacia and osteoarthritis. These in turn can cause severe pain and problems in walking.
It is normal for children to have knock knees between the ages of two and five years of age, and almost all of them resolve as the child grows older. If symptoms are prolonged and pronounced or hereditary, doctors often use orthotic shoes or leg braces at night to gently move a child's leg back into position. If the condition persists and worsens later in life, surgery may be required to relieve pain and complications resulting from severe or hereditary genu valgum. Available surgical procedures include adjustments to the lower femur and total knee replacement (TKR).
Weight loss and substitution of high-impact for low-impact exercise can help slow progression of the condition. With every step, the patient's weight places a distortion on the knee toward a knocked knee position, and the effect is increased with increased angle or increased weight. Even in the normal knee position, the femurs function at an angle because they connect to the hip girdle at points much further apart than they connect at the knees.
Physical therapy is generally of benefit to people with knock knees. To correct knock knees, the entire leg must be treated, especially:
1. Activating and developing the arches of the feet,
2. Waking up the outer leg muscles (abductors), and
3. Learning how to move the inner ankle bone inwards towards the outer ankle bone, and upwards towards the knee.
Working with a physical medicine specialist such as a physiatrist, or a physiotherapist may assist a patient learning how to improve outcomes and use the leg muscles properly to support the bone structures. Alternative or complementary treatments may include certain procedures from Iyengar Yoga or the Feldenkrais Method.
Rarely, the bone malformation underlying knock knees can be traced to a lack of nutrition necessary for bone growth, which can cause conditions such as rickets (lack of bone nutrients, especially dietary vitamin D and calcium), or scurvy (lack of vitamin C). The correction of the underlying vitamin deficiency may restore a more normal progression of bone growth.
Conservative treatment of isolated medial knee injuries (grades I-III) begins with controlling swelling and protecting the knee. Swelling is managed well with rest, ice, elevation, and compression wraps. Protection can be performed using a hinged brace that stabilizes against varus and valgus stress but allows full flexion and extension. The brace should be worn for the first four to six weeks of rehabilitation, especially during physical exercise to prevent trauma to the healing ligament. Stationary bike exercises are the recommended exercise for active range of motion and should be increased as tolerated by the patient. Side-to-side movements of the knee should be avoided. The patient is allowed to bear weight as tolerated and should perform quadriceps strengthening exercises along with range of motion exercises. The typical return-to-play time frame for most athletes with a grade III medial knee injury undergoing a rehabilitation program is 5 to 7 weeks.
Treatment for NPS varies depending on the symptoms observed.
- Perform screening for renal disease and glaucoma, surgery, intensive physiotherapy, or genetic counseling.
- ACE inhibitors are taken to treat proteinuria and hypertension in NPS patients.
- Dialysis and renal transplant.
- Physical therapy, bracing and analgesics for joint pain.
- Other surgery treatments such as patella realignment, joint replacement, and the cutting away of the head of radius.
It is possible for the PCL to heal on its own without surgery when it is in Grades I and II. PCL injuries that are diagnosed in these categories can have their recovery times reduced by performing certain rehabilitative exercises. Fernandez and Pugh(2012) found that following a PCL grade II diagnosis, a treatment that spanned over the course of 8 weeks consisting of chiropractic lumbopelvic manipulation, physiotherapy, and implementing an exercise program that emphasized in eccentric muscle contraction (lunges, 1-leg squats, and trunk stabilization) which proved to be an effective way to recover from the PCL injury. For Grades III and IV, operative surgery is recommended or is usually needed. Grafts is the method when addressing PCL injuries that are in need of operative surgery. With grafts, there are different methods such as the tibial inlay or tunnel method.
In addition, balancing exercises have also been adopted because it has been proven that people with poor balance have more knee injuries than those with good balance. Wobble boards and Bosu balls are very common pieces of equipment used to balance and help prevent knee injuries as long as they are being used with trained personnel. Another possible preventive measure is wearing knee straps to help stabilize the knee and protect it from injury, especially during demanding sports such as football.
The choice of surgical versus non-surgical treatments for osteochondritis dissecans is controversial. Consequently, the type and extent of surgery necessary varies based on patient age, severity of the lesion, and personal bias of the treating surgeon—entailing an exhaustive list of suggested treatments. A variety of surgical options exist for the treatment of persistently symptomatic, intact, partially detached, and completely detached OCD lesions. Post-surgery reparative cartilage is inferior to healthy hyaline cartilage in glycosaminoglycan concentration, histological, and immunohistochemical appearance. As a result, surgery is often avoided if non-operative treatment is viable.
Other treatments include core decompression, where internal bone pressure is relieved by drilling a hole into the bone, and a living bone chip and an electrical device to stimulate new vascular growth are implanted; and the free vascular fibular graft (FVFG), in which a portion of the fibula, along with its blood supply, is removed and transplanted into the femoral head. A 2012 Cochrane systematic review noted that no clear improvement can be found between people who have had hip core decompression and participate in physical therapy, versus physical therapy alone. More research is need to look into the effectiveness of hip core decompression for people with sickle cell disease.
Progression of the disease could possibly be halted by transplanting nucleated cells from bone marrow into avascular necrosis lesions after core decompression, although much further research is needed to establish this technique.
Treatment options include modified activity with or without weight bearing; immobilization; cryotherapy; anti-inflammatory medication; drilling of subchondral bone; microfracture; removal or reattachment of loose bodies; mosaicplasty and osteoarticular transfer system (OATS) procedures. The primary goals of treatment are:
1. Enhance the healing potential of subchondral bone;
2. Fix unstable fragments while maintaining joint congruity; and
3. Replace damaged bone and cartilage with implanted tissues or cells that can grow cartilage.
The articular cartilage's capacity for repair is limited: partial-thickness defects in the articular cartilage do not heal spontaneously, and injuries of the articular cartilage which fail to penetrate subchondral bone tend to lead to deterioration of the articular surface. As a result, surgery is often required in even moderate cases where the osteochondral fragment has not detached from the bone (Anderson Stage II, III).