Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Viral meningitis typically only requires supportive therapy; most viruses responsible for causing meningitis are not amenable to specific treatment. Viral meningitis tends to run a more benign course than bacterial meningitis. Herpes simplex virus and varicella zoster virus may respond to treatment with antiviral drugs such as aciclovir, but there are no clinical trials that have specifically addressed whether this treatment is effective. Mild cases of viral meningitis can be treated at home with conservative measures such as fluid, bedrest, and analgesics.
Antiviral therapy: as early as possible
10~15mg/kg every 8 hours for 14~21d
5~10mg/kg every 12hours for 14~21d
immune therapy: interferon
symptomatic therapy
High fever: physical regulation of body temperature
Seizure: antiepileptic drugs
high intracranial pressure-20%mannitol
Infections: antibiotic drugs
Additional treatment with corticosteroids (usually dexamethasone) has shown some benefits, such as a reduction of hearing loss, and better short term neurological outcomes in adolescents and adults from high-income countries with low rates of HIV. Some research has found reduced rates of death while other research has not. They also appear to be beneficial in those with tuberculosis meningitis, at least in those who are HIV negative.
Professional guidelines therefore recommend the commencement of dexamethasone or a similar corticosteroid just before the first dose of antibiotics is given, and continued for four days. Given that most of the benefit of the treatment is confined to those with pneumococcal meningitis, some guidelines suggest that dexamethasone be discontinued if another cause for meningitis is identified. The likely mechanism is suppression of overactive inflammation.
Additional treatment with corticosteroids have a different role in children than in adults. Though the benefit of corticosteroids has been demonstrated in adults as well as in children from high-income countries, their use in children from low-income countries is not supported by the evidence; the reason for this discrepancy is not clear. Even in high-income countries, the benefit of corticosteroids is only seen when they are given prior to the first dose of antibiotics, and is greatest in cases of "H. influenzae" meningitis, the incidence of which has decreased dramatically since the introduction of the Hib vaccine. Thus, corticosteroids are recommended in the treatment of pediatric meningitis if the cause is "H. influenzae", and only if given prior to the first dose of antibiotics; other uses are controversial.
Treatment for meningitis is antibiotics. The particular drugs used are based off the infecting bacteria, but a mix of ampicillin, gentamicin, and cefotaxime is used for early-onset meningitis before identification of infection. A regimen of antistaphylococcal antibiotic, such as nafcillin or vancomycin, plus cefotaxime or ceftazidime with or without an aminoglycoside is recommended for late-onset neonatal meningitis. The aim for these treatments is to sterilize the CSF of any meningitis-causing pathogens. A repeated LP 24–48 hours after initial treatment should be used to declare sterilization.
In cases of herpes simplex virus-derived meningitis, antiviral therapy (acyclovir or vidarabine) must be started immediately for a favorable outcome. Acyclovir is a better antiviral because it shows a similar effect on the infection as vidarabine and is safer to use in the neonate. The recommended dosage is 20 mg/kg every six hours for 21 days.
Treatment is generally supportive. Rest, hydration, antipyretics, and pain or anti-inflammatory medications may be given as needed.
Herpes simplex virus, varicella zoster virus and cytomegalovirus have a specific antiviral therapy. For herpes the treatment of choice is aciclovir.
Surgical management is indicated where there is extremely increased intracranial pressure, infection of an adjacent bony structure (e.g. mastoiditis), skull fracture, or abscess formation.
The majority of people that have viral meningitis get better within 7-10 days.
Treatment (which is based on supportive care) is as follows:
Pyrimethamine-based maintenance therapy is often used to treat Toxoplasmic Encephalitis (TE), which is caused by Toxoplasma gondii and can be life-threatening for people with weak immune systems. The use of highly active antiretroviral therapy (HAART), in conjunction with the established pyrimethamine-based maintenance therapy, decreases the chance of relapse in patients with HIV and TE from approximately 18% to 11%. This is a significant difference as relapse may impact the severity and prognosis of disease and result in an increase in healthcare expenditure.
When meningococcal disease is suspected, treatment must be started "immediately" and should not be delayed while waiting for investigations. Treatment in primary care usually involves prompt intramuscular administration of benzylpenicillin, and then an urgent transfer to hospital (hopefully, an academic level I medical center, or at least a hospital with round the clock neurological care, ideally with neurological intensive and critical care units) for further care. Once in the hospital, the antibiotics of choice are usually IV broad spectrum 3rd generation cephalosporins, e.g., cefotaxime or ceftriaxone. Benzylpenicillin and chloramphenicol are also effective. Supportive measures include IV fluids, oxygen, inotropic support, e.g., dopamine or dobutamine and management of raised intracranial pressure. Steroid therapy may help in some adult patients, but is unlikely to affect long term outcomes.
Complications following meningococcal disease can be divided into early and late groups. Early complications include: raised intracranial pressure, disseminated intravascular coagulation, seizures, circulatory collapse and organ failure. Later complications are: deafness, blindness, lasting neurological deficits, reduced IQ, and gangrene leading to amputations.
The treatment of TB meningitis is isoniazid, rifampicin, pyrazinamide and ethambutol for two months, followed by isoniazid and rifampicin alone for a further ten months. Steroids help reduce the risk of death in those without HIV. Steroids can be used in the first six weeks of treatment, A few people may require immunomodulatory agents such as thalidomide. Hydrocephalus occurs as a complication in about a third of people with TB meningitis. The addition of aspirin may reduce or delay mortality, possibly by reducing complications such as infarcts.
Acyclovir is the treatment of choice for Mollaret's meningitis. Some patients see a drastic difference in how often they get sick and others don't. Often treatment means managing symptoms, such as pain management and strengthening the immune system.
The IHMF recommends that patients with benign recurrent lymphocytic meningitis receive intravenous acyclovir in the amount of 10 mg/kg every 8 hours, for 14–21 days. More recently, the second-generation antiherpetic drugs valacyclovir and famciclovir have been used to successfully treat patients with Mollaret's. Additionally, it has been reported that Indomethacin administered in the amount of 25 mg 3 times per day after meals, or 50 mg every 4 hours, has resulted in a faster recovery for patients, as well as more extended symptom-free intervals, between episodes.
Effective antibiotics include penicillin G, ampicillin, amoxicillin and doxycycline. In more severe cases cefotaxime or ceftriaxone should be preferred.
Glucose and salt solution infusions may be administered; dialysis is used in serious cases. Elevations of serum potassium are common and if the potassium level gets too high special measures must be taken. Serum phosphorus levels may likewise increase to unacceptable levels due to kidney failure.
Treatment for hyperphosphatemia consists of treating the underlying disease, dialysis where appropriate, or oral administration of calcium carbonate, but not without first checking the serum calcium levels (these two levels are related). Administration of corticosteroids in gradually reduced doses (e.g., prednisolone) for 7–10 days is recommended by some specialists in cases of severe hemorrhagic effects. Organ-specific care and treatment are essential in cases of kidney, liver, or heart involvement.
Treatment is symptomatic and supportive. Children with hydrocephalus often need a ventriculoperitoneal shunt. Nucleoside analog ribavirin is used in some cases due to the inhibitory effect the agent has "in vitro" on arenaviruses. However, there is not sufficient evidence for efficacy in humans to support routine use. The only survivor of a transplant-associated LCMV infection was treated with ribavirin and simultaneous tapering of the immunosuppressive medications. Early and intravenous ribavirin treatment is required for maximal efficacy, and it can produce considerable side effects. Ribavirin has not been evaluated yet in controlled clinical trials.
Use of ribavirin during pregnancy is generally not recommended, as some studies indicate the possibility of teratogenic effects. If aseptic meningitis, encephalitis, or meningoencephalitis develops in consequence to LCMV, hospitalization and supportive treatment may be required. In some circumstances, anti-inflammatory drugs may also be considered. In general, mortality is less than one percent.
The disease is incurable once manifested, so there is no specific drug therapy for TBE. Symptomatic brain damage requires hospitalization and supportive care based on syndrome severity. Anti-inflammatory drugs, such as corticosteroids, may be considered under specific circumstances for symptomatic relief. Tracheal intubation and respiratory support may be necessary.
Prevention includes non-specific (tick-bite prevention, tick checks) and specific prophylaxis in the form of a vaccine. TBE immunoglobulin is no longer used. Tick-borne encephalitis vaccine is very effective and available in many disease endemic areas and in travel clinics.
Recurring Mollaret meningitis attacks will occur through the patient lifespan so long as the HSV virus is not managed. Patients have reported symptoms for as long as 30 years from first episode. Diet and stress management are key to keeping the HSV virus at bay.
No specific therapy is available at present for La Crosse encephalitis, and management is limited to alleviating the symptoms and balancing fluids and electrolyte levels. Intravenous ribavirin is effective against La Crosse encephalitis virus in the laboratory, and several studies in patients with severe, brain biopsy confirmed, La Crosse encephalitis are ongoing.
In a trial with 15 children being infected with La Crosse viral encephalitis were treated at certain phases with ribavirin (RBV). RBV appeared to be safe at moderate doses. At escalated doses of RBV, adverse events occurred and then the trial was discontinued. Nonetheless, this was the largest study of antiviral treatment for La Crosse encephalitis.
The disease is associated with high rates of mortality and severe morbidity.
Fungal meningitis is treated with long courses of high dose antifungal medications. The duration of treatment is dependent upon the causal pathogen and the patient's ability to stave off the infection; for patients with a weaker immune system or diabetes, treatment will often take longer.
Because it is a bacterial disease, the primary method of treatment for "Haemophilus" meningitis is anti-bacterial therapy. Common antibiotics include ceftriaxone or cefotaxime, both of which can combat the infection and thus reduce inflammation in the meninges, or the membranes that protect the brain and spinal cord. Anti-inflammatories such as corticosteroids, or steroids produced by the body to reduce inflammation, can also be used to fight the meningeal inflammation in an attempt to reduce risk of mortality and reduce the possibility of brain damage.
Development of new therapies has been hindered by the lack of appropriate animal model systems for some important viruses and also because of the difficulty in conducting human clinical trials for diseases that are rare. Nonetheless, numerous innovative approaches to antiviral therapy are available including candidate thiazolide and purazinecarboxamide derivatives with potential broad-spectrum antiviral efficacy. New herpes virus drugs include viral helicase-primase and terminase inhibitors. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses.
Vaccination is available against tick-borne and Japanese encephalitis and should be considered for at-risk individuals. Post-infectious encephalomyelitis complicating smallpox vaccination is avoidable, for all intents and purposes, as smallpox is nearly eradicated. Contraindication to Pertussis immunization should be observed in patients with encephalitis.
Treatments of proven efficacy are currently limited mostly to herpes viruses and human immunodeficiency virus. The herpes virus is of two types: herpes type 1 (HSV-1, or oral herpes) and herpes type 2 (HSV-2, or genital herpes). Although there is no particular cure; there are treatments that can relieve the symptoms. Drugs like Famvir, Zovirax, and Valtrex are among the drugs used, but these medications can only decrease pain and shorten the healing time. They can also decrease the total number of outbreaks in the surrounding. Warm baths also may relive the pain of genital herpes.
Human Immunodeficiency Virus Infection (HIV) is treated by using a combination of medications to fight against the HIV infection in the body. This is called antiretroviral therapy (ART). ART is not a cure, but it can control the virus so that a person can live a longer, healthier life and reduce the risk of transmitting HIV to others around him. ART involves taking a combination of HIV medicines (called an HIV regimen) every day, exactly as prescribed by the doctor. These HIV medicines prevent HIV Virus from multiplying (making copies of itself in the body), which reduces the amount of HIV in the body. Having less HIV in the body gives the immune system a chance to recover and fight off infections and cancers. Even though there is still some HIV in the body, the immune system is strong enough to fight off infections and cancers. By reducing the amount of HIV in the body, HIV medicines also reduce the risk of transmitting the virus to others. ART is recommended for all people with HIV, regardless of how long they’ve had the virus or how healthy they are. If left untreated, HIV will attack the immune system and eventually progress to AIDS.
Most people recover from West Nile virus without treatment. No specific treatment is available for WNV infection. In mild cases over the counter pain relievers can help ease mild headaches and muscle aches in adults. In severe cases treatment consists of supportive care that often involves hospitalization, intravenous fluids, pain medication, respiratory support, and prevention of secondary infections.
People reduce the chance of getting infected with LACV by preventing mosquito bites. There is no vaccine or preventive drug.
Prevention measures against LACV include reducing exposure to mosquito bites. Use repellent such as DEET and picaridin, while spending time outside, especially at during the daytime - from dawn until dusk. "Aedes triseriatus" mosquitoes that transmit (LACV) are most active during the day. Wear long sleeves, pants and socks while outdoors. Ensure all screens are in good condition to prevent mosquitoes from entering your home. "Aedes triseriatus" prefer treeholes to lay eggs in. Also, remove stagnant water such as old tires, birdbaths, flower pots, and barrels.
Doxycycline has been provided once a week as a prophylaxis to minimize infections during outbreaks in endemic regions. However, there is no evidence that chemoprophylaxis is effective in containing outbreaks of leptospirosis, and use of antibiotics increases antibiotics resistance. Pre-exposure prophylaxis may be beneficial for individuals traveling to high-risk areas for a short stay.
Effective rat control and avoidance of urine contaminated water sources are essential preventive measures. Human vaccines are available only in a few countries, such as Cuba and China. Animal vaccines only cover a few strains of the bacteria. Dog vaccines are effective for at least one year.
Children 2–10 years of age who are at high risk for meningococcal disease such as certain chronic medical conditions and travel to or reside in countries with hyperendemic or epidemic meningococcal disease should receive primary immunization. Although safety and efficacy of the vaccine have not been established in children younger than 2 years of age and under outbreak control, the unconjugated vaccine can be considered.