Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are no prospective randomized controlled trials studying therapies for relapsing polychondritis. Evidence for efficacy of treatments is based on case reports and series of small groups of patients.
For mild cases limited to joint pain or arthritis, oral nonsteroidal anti-inflammatory drugs (NSAIDs) may be used. Other treatments typically involve medications to suppress the immune system. Corticosteroids are frequently used for more serious disease. Steroid-sparing medications such as azathioprine or methotrexate may be used to minimize steroid doses and limit the side effects of steroids. For severe disease cyclophosphamide is often given in addition to high dose intravenous steroids.
Acne treatment may require oral tetracycline antibiotics or isotretinoin. Treatments directed at tumor necrosis factor (TNF) (infliximab, etanercept) and interleukin-1 (anakinra) have shown a good response in resistant arthritis and pyoderma gangrenosum. Other traditional immunosuppressant treatments for arthritis or pyoderma gangrenosum may also be used.
Treatment with either glucocorticoids, methotrexate, anakinra, or tocilizumab has been examined. Anakinra has been shown to resolve the clinical features of the disease in 87% of patients. It also induces remission in half of corticosteroid-resistant patients. The results of another study were similar, with half of the patients responding to treatment with Anakinra. Canakinumab, an antibody to
interleukin-1 beta, is indicated for treatment in patients who respond poorly to other treatments.
The first-line treatment for arteritis is oral glucocorticoid (steroid) medication, such as prednisone, taken daily for a period of three months. After this initial phase, the medication may be reduced in dose or frequency, e.g. every other day, if possible. If the disease worsens with the new treatment schedule, a cytotoxic medication may be given, in addition to the glucocorticoid. Commonly used cytotoxic agents include azathioprine, methotrexate, or cyclophosphamide. The dose of glucocorticoid medication may be decreased if response to treatment is good. This medication may be reduced gradually once the disease becomes inactive, slowly tapering the dose (to allow the body time to adjust) until the medication may be stopped completely. Conversely, if the disease remains active, the medication will need to be increased. After six months, if the medication cannot be reduced in frequency to alternate days, or if in 12 months the medications cannot be stopped completely, then treatment is deemed to have failed.
Pulsed therapy is an alternative method of administering the medications above, using much higher doses over a short period of time (a pulse), to reduce the inflammation within the arteries. Methylprednisolone, a glucocorticoid, is often used for pulse therapy; cyclophosphamide is an alternative. This method has been shown to be successful for some patients. Immunosuppressive pulse therapy, such as with cyclophosphamide, has also demonstrated relief of symptoms associated with arteritis.
Unfortunately, treatment for the anti-synthetase syndrome is limited, and usually involves immunosuppressive drugs such as glucocorticoids. For patients with pulmonary involvement, the most serious complication of this syndrome is pulmonary fibrosis and subsequent pulmonary hypertension.
Additional treatment with azathioprine and/or methotrexate may be required in advanced cases.
Prognosis is largely determined by the extent of pulmonary damage.
Prednisone is the drug of choice for PMR, and treatment duration is frequently greater than one year. If the patient does not experience dramatic improvement after three days of 10–20 mg oral prednisone per day, the diagnosis should be reconsidered. Sometimes relief of symptoms occurs in only several hours.
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen are ineffective in the initial treatment of PMR, but they may be used in conjunction with the maintenance dose of corticosteroid.
Along with medical treatment, patients are encouraged to exercise and eat healthily--helping to maintain a strong immune system and build strong muscles and bones. A diet of fruits, vegetables, whole grains, and low-fat meat and dairy products, avoiding foods with high levels of refined sugars and salt is recommended.
The treatment of juvenile arthritis includes medications, physical therapy, splints and in severe cases surgery. These treatments are focused on reducing swelling, relieving pain and maintaining full movement of joints. Children are encouraged to be involved in extra-curricular activities, physical activity when possible, and to live a "normal" life.
Corticosteroids, typically high-dose prednisone (1 mg/kg/day), must be started as soon as the diagnosis is suspected (even before the diagnosis is confirmed by biopsy) to prevent irreversible blindness secondary to ophthalmic artery occlusion. Steroids do not prevent the diagnosis from later being confirmed by biopsy, although certain changes in the histology may be observed towards the end of the first week of treatment and are more difficult to identify after a couple of months. The dose of prednisone is lowered after 2–4 weeks, and slowly tapered over 9–12 months. Tapering may require two or more years. Oral steroids are at least as effective as intravenous steroids, except in the treatment of acute visual loss where intravenous steroids appear to offer significant benefit over oral steroids. It is unclear if adding a small amount of aspirin is beneficial or not as it has not been studied.
Many individuals have mild symptoms, which recur infrequently, while others may have persistent problems that become debilitating or life-threatening.
JIA is best treated by a multidisciplinary team. The major emphasis of treatment for JIA is to help the child regain normal level of physical and social activities. This is accomplished with the use of physical therapy, pain management strategies, and social support. Another emphasis of treatment is to control inflammation and extra-articular symptoms quickly. Doing so should help to reduce joint damage and other symptoms, which will help reduce levels of permanent damage leading to disability.
Beneficial advances in drug treatment have been made over the last 20 years. Most children are treated with nonsteroidal anti-inflammatory drugs and intra-articular corticosteroid injections. Methotrexate, a disease-modifying antirheumatic drug (DMARD) is a powerful drug which helps suppress joint inflammation in the majority of JIA patients with polyarthritis (though less useful in systemic arthritis). Newer drugs have been developed recently, such as TNF alpha blockers, such as etanercept. No controlled evidence supports the use of alternative remedies such as specific dietary exclusions, homeopathic treatment, or acupuncture. However, an increased consumption of omega-3 fatty acids proved to be beneficial in two small studies.
Celecoxib has been found effective in one study.
Other aspects of managing JIA include physical and occupational therapy. Therapists can recommend the best exercise and also make protective equipment. Moreover, the child may require the use of special supports, ambulatory devices, or splints to help them ambulate and function normally.
Surgery is only used to treat the most severe cases of JIA. In all cases, surgery is used to remove scars and improve joint function.
Home remedies that may help JIA includes getting regular exercises to increase muscle strength and joint flexibility. Swimming is perhaps the best activity for all children with JIA. Stiffness and swelling can also be reduced with application of cold packs, but a warm bath or shower can also improve joint mobility.
In the future, genetic testing may be available allowing earlier detection of JIA. Early detection will help determine the severity of the disease in each child and help identify which therapies will be the most effective and beneficial treatment options.
Corticosteroids remain the main treatment modality for IOI. There is usually a dramatic response to this treatment and is often viewed as pathognomonic for this disease. Although response is usually quick, many agree that corticosteroids should be continued on a tapering basis to avoid breakthrough inflammation.
Although many respond to corticosteroid treatment alone, there are several cases in which adjuvant therapy is needed. While many alternatives are available, there is no particular well-established protocol to guide adjuvant therapy. Among the available options there is: surgery, alternative corticosteroid delivery, radiation therapy, non-steroidal anti-inflammatory drugs, cytotoxic agents (chlorambucil, cyclophosphamide), corticosteroid sparing immunosuppressants (methotrexate, cyclosporine, azathioprine), IV immune-globin, plasmapheresis, and biologic treatments (such as TNF-α inhibitors).
Treatments are generally directed toward stopping the inflammation and suppressing the immune system. Typically, corticosteroids such as prednisone are used. Additionally, other immune suppression drugs, such as cyclophosphamide and others, are considered. In case of an infection, antimicrobial agents including cephalexin may be prescribed. Affected organs (such as the heart or lungs) may require specific medical treatment intended to improve their function during the active phase of the disease.
Treatment protocol is not well established. Some sources report that approximately half of the patients will fully recover after lengthy (mean time 14.5 months, range 2–24 months) expectant management.
Treatment with steroids is lengthy and usually requires about 6 months. While some source report very good success with steroids most report a considerable risk of recurrence after a treatment with steroids alone. Steroids are known to cause elevation of prolactin levels and increase risk of several conditions such as diabetes, and other endocrinopathies which in turn increase the risk of IGM. Treatment with topical steroids to limit side effects was also reported in one case. For surgical treatment recurrence rates of 5-50% have been reported.
A 1997 literature review article recommended complete resection or corticosteroid therapy, stating also that long-term follow-up was indicated due to a high rate of recurrence.
Treatment with a combination of glucocorticoids and prolactin lowering medications such as bromocriptine or cabergoline was used with good success in Germany. Prolactin lowering medication has also been reported to reduce the risk of recurrence. In cases of drug-induced hyperprolactinemia (such as antipsychotics) prolactin-sparing medication can be tried.
Methotrexate alone or in combination with steroids has been used with good success. Its principal mechanism of action is immunomodulating activity, with a side effect profile that is more favorable for treating IGM.
Colchicine, azathioprine and NSAIDs have also been used.
Treatment is targeted to the underlying cause. However, most vasculitis in general are treated with steroids (e.g. methylprednisolone) because the underlying cause of the vasculitis is due to hyperactive immunological damage. Immunosuppressants such as cyclophosphamide and azathioprine may also be given.
A systematic review of antineutrophil cytoplasmic antibody (ANCA) positive vasculitis identified best treatments depending on whether the goal is to induce remission or maintenance and depending on severity of the vasculitis.
Non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids are most used in PDP treatment. These drugs inhibit cyclo-oxygenase activity and thereby prostaglandin synthesis. Since PGE is likely to be involved in periosteal bone formation and acroosteolysis, this is why these drugs can alleviate the polyarthritis associated with PDP. In addition, NSAIDs and corticosteroids decrease formation of inflammatory mediators, reducing inflammation and pain. In case of possible gastropathy, the COX-2 selective NSAID etorixocib is preferred.
Infliximab can reduce pain and arthritis in PDP. It is a monoclonal antibody that blocks the biological action of TNF-α (tumor necrosis factor-alpha). TNF-α is an inflammatory cytokine found in high levels in PDP and it is involved in the production of other inflammatory mediators which increase the expression of RANKL. RANKL is thought to increase bone resorption.
Most people with Takayasu’s arteritis respond to steroids such as prednisone. The usual starting dose is approximately 1 milligram per kilogram of body weight per day (for most people, this is approximately 60 milligrams a day). Because of the significant side effects of long-term high-dose prednisone use, the starting dose is tapered over several weeks to a dose which controls symptoms while limiting the side effects of steroids.
Promising results are achieved with mycophenolate and tocilizumab. If treatment is not kept to a high standard, long-term damage or death can occur.
For patients who do not respond to steroids may require revascularization, either via vascular bypass or angioplasty and stenting. Outcomes following revascularization vary depending on the severity of the underlying disease
Physicians often prescribe the antibiotic trimethoprim-sulfamethoxazole to prevent bacterial infections. This drug also has the benefit of sparing the normal bacteria of the digestive tract. Fungal infection is commonly prevented with itraconazole, although a newer drug of the same type called voriconazole may be more effective. The use of this drug for this purpose is still under scientific investigation.
There is no effective treatment for this condition. It has been reported that clearance of lesions can be done with melphalan and cyclophosphamide alone or in combination with prednisone. Both isotretinoin and etretinate have also been shown to improve the conditions. All medications listed can cause adverse symptoms, with isotretinoin and etretinate particularly dangerous since they are both teratogens. Other attempted treatments include interferon-alpha, cyclosporine, PUVA photochemotherapy, electron-beam therapy, IVIg, and dermabrasion. However, the overall prognosis for the disease is poor. There are reported instances of remission of the disease when treated with a combination of Revlimid and Dexamethasone over a 24-month period.
Rheumatologic symptoms can be improved by treatment with biphosphonates, such as pamidronate or risedronate. Biphosphonates inhibit osteoclastic bone resorption and therefore reduce bone remodeling and alleviate painful polyarthritis.
In isolated cases, tamoxifen was effective in PDP treatment, especially for bone and joint pain. In PDP patients, high levels of nuclear receptors were found for steroids, which was the rationale to use tamoxifen, an estrogen receptor antagonist. Tamoxifen and several of its metabolites competitively bind to estrogen receptors on tissue targets, producing a nuclear complex that decreases DNA synthesis. Cells are in G and G phases. In vitro studies showed that tamoxifen acts as an estrogen agonist on bone and inhibits the resorbing activity of osteoclasts (disruption of bone tissue).
Interferon, in the form of interferon gamma-1b (Actimmune) is approved by the Food and Drug Administration for the prevention of infection in CGD. It has been shown to reduce infections in CGD patients by 70% and to decrease their severity. Although its exact mechanism is still not entirely understood, it has the ability to give CGD patients more immune function and therefore, greater ability to fight off infections. This therapy has been standard treatment for CGD for several years.
A common approach to treating a child with JIA typically involves a team of medical professionals including a rheumatologist, occupational therapist (OT), physical therapist (PT), nurse and social worker.
The role of the OT/PT is to help children participate as fully and independently as possible in their daily activities or "occupations", by preventing psychological and physical dependency. The aim is to maximize quality of life, and minimize disruption to the child’s and family’s life. OTs work with children, their families and schools, to come up with an individualized plan which is based on the child’s condition, limitations, strengths and goals. This is accomplished by ongoing assessments of a child’s abilities and social functioning. The plan may include the use of a variety of assistive devices, such as splints, that help a person perform tasks. The plan may also involve changes to the home, encouraging use of uninvolved joints, as well as providing the child and their family with support and education about the disease and strategies for managing it. OT interventions will be changed depending on the progression and remission of JIA, in order to promote age-appropriate self-sufficiency. Early OT involvement is essential. Interventions taught by an OT can help a child adapt and adjust to the challenges of JIA throughout the rest of their life.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Large doses of glucocorticoids are the treatment of choice, and are administered until the signs have resolved. In uncomplicated cases, this can take up to a month. If dogs are not treated promptly and with high doses of steroids, severe scarring may occur. If there is evidence of secondary bacterial infection, treatment with antibiotics is required.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
Kiacta - (eprodisate disodium) is in 2015 being evaluated as a protector of renal function in AA amyloidosis. Kiacta, inhibits the formation and deposition of the amyloid A fibrils into the tissues.