Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment depends on the severity and symptoms. Treatments include:
- Endovascular stenting.
- Renal vein re-implantation.
- Gonadal vein embolization.
Decompression of the celiac artery is the general approach to treatment of MALS. The mainstay of treatment involves an open surgical approach to divide, or separate, the median arcuate ligament to relieve the compression of the celiac artery. This is combined with removal of the celiac ganglia and evaluation of blood flow through the celiac artery, for example by intraoperative duplex ultrasound. If blood flow is poor, celiac artery revascularization is usually attempted; methods of revascularization include aortoceliac bypass, patch angioplasty, and others.
A laparoscopic approach may also be used to achieve celiac artery decompression; however, should the celiac artery require revascularization, the procedure would require conversion to an open approach.
Endovascular methods such as percutaneous transluminal angioplasty (PTA) have been used in patients who have failed open and/or laparoscopic intervention. PTA alone, without decompression of the celiac artery, may not be of benefit.
Surgical approaches have also been used successfully in TOS. Microsurgery can be used approaching the area from above the collar bone (supraclavicular) followed by neurolysis of the brachial plexus, removal of the scalene muscle (scalenectomy), and the release of the underlying (subclavicular) blood vessels. This approach avoids the use of resection, and has been found to be an effective treatment. In cases where the first rib (or a fibrous band extending from the first rib) is compressing a vein, artery, or the nerve bundle, part of the first rib and any compressive fibrous tissue, can be removed in a first rib resection surgical procedure; scalene muscles may also need to be removed (scalenectomy). This allows increased blood flow and the reduction of nerve compression. In some cases there may be a rudimentary rib or a cervical rib that can be causing the compression, which can be removed using the same technique.
Physical therapy is often used before and after the operation to improve recovery time and outcomes. Potential complications include pneumothorax, infection, loss of sensation, motor problems, subclavian vessel damage, and, as in all surgeries, a very small risk of permanent serious injury or death.
Several methods of treatment are available, mainly consisting of careful drug therapy and surgery. Glucocorticoids (such as prednisone or methylprednisolone) decrease the inflammatory response to tumor invasion and edema surrounding the tumor. Glucocorticoids are most helpful if the tumor is steroid-responsive, such as lymphomas. In addition, diuretics (such as furosemide) are used to reduce venous return to the heart which relieves the increased pressure.
In an acute setting, endovascular stenting by an interventional radiologist may provide relief of symptoms in as little as 12–24 hours with minimal risks.
Should a patient require assistance with respiration whether it be by bag/valve/mask, BiPAP, CPAP or mechanical ventilation, extreme care should be taken. Increased airway pressure will tend to further compress an already compromised SVC and reduce venous return and in turn cardiac output and cerebral and coronary blood flow. Spontaneous respiration should be allowed during endotracheal intubation until sedation allows placement of an ET tube and reduced airway pressures should be employed when possible.
In a review, botox was compared to a placebo injected into the scalene muscles. No effect in terms of pain relief or improved movement was noted. However in a six-months follow-up, paresthesia (abnormal sensations such as in "pins and needles") was seen to be significantly improved.
Management of the underlying defect is proportional to the severity of the clinical presentation. Leg swelling and pain is best evaluated by vascular specialists (vascular surgeons, interventional cardiologists, interventional radiologists) who both diagnose and treat arterial and venous diseases to ensure that the cause of the extremity pain is evaluated. The diagnosis needs to be confirmed with some sort of imaging that may include magnetic resonance venography, venogram and usually confirmed with intravascular ultrasound because the flattened vein may not be noticed on conventional venography. In order to prevent prolonged swelling or pain from the consequences of the backed up blood from the compressed iliac vein, flow needs to be improved out of the leg. Uncomplicated cases may be managed with compression stockings.
Severe May-Thurner syndrome may require thrombolysis if there is a recent onset of thrombosis, followed by angioplasty and stenting of the iliac vein after confirming the diagnosis with a venogram or an intravascular ultrasound. A stent may be used to support the area from further compression following angioplasty. As the name implies, there classically is not a thrombotic component in these cases, but thrombosis may occur at any time.
If the patient has extensive thrombosis, it may be appropriate to consider pharmacologic and/or mechanical (also known as pharmacomechanical) thrombectomy. This is currently being studied to determine whether this will decrease the incidence of post-thrombotic syndrome.
There are few studies of the long-term outcomes of patients treated for MALS. According to Duncan, the largest and more relevant late outcomes data come from a study of 51 patients who underwent open surgical treatment for MALS, 44 of whom were available for long-term follow-up at an average of nine years following therapy. The investigators reported that among patients who underwent celiac artery decompression and revascularization, 75% remained asymptomatic at follow-up. In this study, predictors of favorable outcome included:
- Age from 40 to 60 years
- Lack of psychiatric condition or alcohol use
- Abdominal pain that was worse after meals
- Weight loss greater than 20 lb (9.1 kg)
Treatment is decompression of the quadrilateral space, with supportive therapy in recalcitrant cases.
Sclerotherapy is a treatment for specific veins and vascular malformations in the affected area. It involves the injection of a chemical into the abnormal veins to cause thickening and obstruction of the targeted vessels. Such treatment may allow normal blood flow to resume. It is a non-surgical medical procedure and is not nearly as invasive as debulking. Ultrasound guided foam sclerotherapy is the state of the art new treatment which could potentially close many large vascular malformations.
Compression therapies are finding more use as of the last ten years. The greatest issue with KTS syndrome is that the blood flow and/or lymph flow may be impeded, and will pool in the affected area. This can cause pain, swelling, inflammations, and in some cases, even ulceration and infection. Among older children and adults, compression garments can be used to alleviate almost all of these, and when combined with elevation of the affected area and proper management, can result in a comfortable lifestyle for the patient without any surgery. Compression garments are also used lately after a debulking procedure to maintain the results of the procedure. For early treatment of infants and toddlers with KTS, custom compression garments are impractical because of the rate of growth. When children may benefit from compression therapies, wraps and lymphatic massage may be used. While compression garments or therapy are not appropriate for everyone, they are relatively cheap (compared to surgery), and have few side-effects. Possible side-effects include a slight risk that the fluids may simply be displaced to an undesirable location (e.g., the groin), or that the compression therapy itself further impedes circulation to the affected extremities.
SMA syndrome can present in acute, acquired form (e.g. abruptly emerging within an inpatient stay following scoliosis surgery) as well as chronic form (i.e. developing throughout the course of a lifetime and advancing due to environmental triggers, life changes, or other illnesses). According to a number of recent sources, at least 70% of cases can typically be treated with medical treatment, while the rest require surgical treatment.
Medical treatment is attempted first in many cases. In some cases, emergency surgery is necessary upon presentation. A six-week trial of medical treatment is recommended in pediatric cases. The goal of medical treatment for SMA Syndrome is resolution of underlying conditions and weight gain. Medical treatment may involve nasogastric tube placement for duodenal and gastric decompression, mobilization into the prone or left lateral decubitus position, the reversal or removal of the precipitating factor with proper nutrition and replacement of fluid and electrolytes, either by surgically inserted jejunal feeding tube, nasogastric intubation, or peripherally inserted central catheter (PICC line) administering total parenteral nutrition (TPN). Pro-motility agents such as metoclopramide may also be beneficial. Symptoms may improve after restoration of weight, except when reversed peristalsis persists, or if regained fat refuses to accumulate within the mesenteric angle. Most patients seem to benefit from nutritional support with hyperalimentation irrespective of disease history.
If medical treatment fails, or is not feasible due to severe illness, surgical intervention is required. The most common operation for SMA syndrome, duodenojejunostomy, was first proposed in 1907 by Bloodgood. Performed as either an open surgery or laparoscopically, duodenojejunostomy involves the creation of an anastomosis between the duodenum and the jejunum, bypassing the compression caused by the AA and the SMA. Less common surgical treatments for SMA syndrome include Roux-en-Y duodenojejunostomy, gastrojejunostomy, anterior transposition of the third portion of the duodenum, intestinal derotation, division of the ligament of Treitz (Strong's operation), and transposition of the SMA. Both transposition of the SMA and lysis of the duodenal suspensory muscle have the advantage that they do not involve the creation of an intestinal anastomosis.
The possible persistence of symptoms after surgical bypass can be traced to the remaining prominence of reversed peristalsis in contrast to direct peristalsis, although the precipitating factor (the duodenal compression) has been bypassed or relieved. Reversed peristalsis has been shown to respond to duodenal circular drainage—a complex and invasive open surgical procedure originally implemented and performed in China.
In some cases, SMA Syndrome may occur alongside a serious, life-threatening condition such as cancer or AIDS. Even in these cases, though, treatment of the SMA Syndrome can lead to a reduction in symptoms and an increased quality of life.
Debulking has been the most common treatment for KTS for several decades and while improvements have been made, the procedure is still considered invasive and has several risks associated with it. More effective and less invasive treatment choices now exist for KTS patients and therefore debulking is generally only recommended as a last resort. Debulking operations can result in major deformities and also leave patients with permanent nerve damage.
Mayo Clinic has reported the largest experience in managing KTS with major surgery. In 39 years at Mayo clinic the surgery team evaluated 252 consecutive cases of KTS, of which only 145 (57.5%) could be treated by primary surgery. The immediate success rate for treating varicose veins was only 40%, excision of vascular malformation was possible in 60%, debulking operations in 65%, and correction of bone deformity and limb length correction (epiphysiodesis) had 90% success. All the procedures demonstrated high recurrence rate in the follow-up. Mayo clinic studies demonstrate that primary surgical management of KTS has limitations and non-surgical approaches need to be developed in order to offer a better quality of life for these patients. Major surgery including amputation and debulking surgery does not seem to offer any benefit on a long-term basis.
Aortic ruptures can be repaired surgically via open aortic surgery or using endovascular therapy (EVAR), regardless of cause, just as non-ruptured aortic aneurysms are repaired. An aortic occlusion balloon can be placed to stabilize the patient and prevent further blood loss prior to the induction of anesthesia.
Treatment consists of painkillers and surgical ablation of the dilated vein. This can be accomplished with open abdominal surgery (laparotomy) or keyhole surgery (laparoscopy). Recently, the first robot-assisted surgery was described.
Another approach to treatment involves catheter-based embolisation, often preceded by phlebography to visualise the vein on X-ray fluoroscopy.
Ovarian vein coil embolisation is an effective and safe treatment for pelvic congestion syndrome and lower limb varices of pelvic origin. Many patients with lower limb varices of pelvic origin respond to local treatment i.e. ultrasound guided sclerotherapy. In those cases, ovarian vein coil embolisation should be considered second line treatment to be used if veins recur in a short time period i.e. 1–3 years. This approach allows further pregnancies to proceed if desired. Coil embolisation is not appropriate if a future pregnancy is possible. This treatment has largely superseded operative options.
Coil embolisation requires exclusion of other pelvic pathology, expertise in endovascular surgery, correct placement of appropriate sized coils in the pelvis and also in the upper left ovarian vein, careful pre- and post-procedure specialist vascular ultrasound imaging, a full discussion of the procedure with the patient i.e. informed consent. Complications, such as coil migration, are rare but reported. Their sequelae are usually minor.
If a Nutcracker compression (see below) is discovered, stenting of the renal vein should be considered before embolization of the ovarian vein. Reducing outflow obstruction should always be the main objective.
Aortocaval compression syndrome is compression of the abdominal aorta and inferior vena cava by the gravid uterus when a pregnant woman lies on her back, i.e. in the supine position. It is a frequent cause of low maternal blood pressure (hypotension), which can be result in loss of consciousness and in extreme circumstances fetal demise.
Aortocaval compression is thought to be the cause of supine hypotensive syndrome. Supine hypotensive syndrome is characterized by pallor, tachycardia, sweating, nausea, hypotension and dizziness and occurs when a pregnant woman lies on her back and resolves when she is turned on her side.
The aorta and inferior vena cava are central vessels, the largest artery and vein. They supply blood to the heart, and the rest of the body. Thus, when there is compression due to the weight of the fetus, signs of shock (sweating, pallor, fast and weak pulse) may be experienced. Patients should be placed in a left lateral recumbent position and emergency help summoned immediately.
Conservative treatment of CVI in the leg involves symptomatic treatment and efforts to prevent the condition from getting worse instead of effecting a cure. This may include
- Manual compression lymphatic massage therapy
- Skin lubrication
- Sequential compression pump
- Ankle pump
- Compression stockings
- Blood pressure medicine
- Frequent periods of rest elevating the legs above the heart level
- Tilting the bed so that the feet are above the heart. This may be achieved by using a 20 cm (7-inch) bed wedge or sleeping in a 6 degree Trendelenburg position. Obese or pregnant patients might be advised by their physicians to forgo the tilted bed.
Venous Insufficiency Conservative, Hemodynamic and Ambulatory treatment" is an ultrasound guided, minimally invasive surgery strategic for the treatment of varicose veins, performed under local anaesthetic. CHIVA is an abbreviation from the French "Cure Conservatrice et Hemodynamique de l'Insufficience Veineuse en Ambulatoire".
Non-surgical treatment of radial tunnel syndrome includes rest, NSAID, therapy with modalities, work modification, ergonomic modification, injection if associated with lateral epicondylitis.
Patients whose conditions are more adapted to surgical intervention are those who do not respond to prolonged conservative treatment. The patient must have pain with resisted supination, positive middle finger test, positive electrodiagnostic findings, and pain relief after anesthetic injection into the radial tunnel. Based on 2002 data, surgical decompression leads to 60-70% good or excellent results.
There are numerous pharmaceutical treatments for neuropathic pain associated with pudendal neuralgia. Drugs used include anti-epileptics (like gabapentin), antidepressants (like amitriptyline), and palmitoylethanolamide.
Alcock canal infiltration with corticosteroids is a minimally invasive technique which allows for pain relief and could be tried when physical therapy has failed and before surgery. A long-acting local anesthetic (bupivacaine hydrochloride) and a corticosteroid (e.g. methylprednisolone) are injected to provide immediate pudendal anesthesia. The injections may also bring a long-term response because the anti-inflammatory effects of the steroid and steroid-induced fat necrosis can reduce inflammation in the region around the nerve and decrease pressure on the nerve itself. This treatment may be effective in 65–73% of patients.
Surgical decompression can give excellent results if the clinical picture and the EMG suggest a compression neuropathy.
In brachial plexus neuritis, conservative management may be more appropriate.
Spontaneous recovery has been reported, but is said to be delayed and incomplete.
There is a role for physiotherapy and this should be directed specifically towards the pattern of pain and symptoms. Soft tissue massage, stretches and exercises to directly mobilise the nerve tissue may be used.
Prevention of PTS begins with prevention of initial and recurrent DVT. For people hospitalized at high-risk of DVT, prevention methods may include early ambulation, use of compression stockings or electrostimulation devices, and/or anticoagulant medications.
Increasingly, catheter-directed thrombolysis has been employed. This is a procedure in which interventional radiology will break up a clot using a variety of methods.
For people who have already had a single DVT event, the best way to prevent a second DVT is appropriate anticoagulation therapy.
A second prevention approach may be weight loss for those who are overweight or obese. Increased weight can put more stress and pressure on leg veins, and can predispose patients to developing PTS.
The treatment of PRES dependent on its cause. Anti-epileptic medication may also be appropriate.
Treatment options for PTS include proper leg elevation, compression therapy with elastic stockings, or electrostimulation devices, pharmacotherapy (pentoxifylline), herbal remedies (such as horse chestnut, rutosides), and wound care for leg ulcers.
The benefits of compression bandages is unclear. They may be useful to treat edemas.
The management of true cauda equina syndrome frequently involves surgical decompression. When cauda equina syndrome is caused by a herniated disk early surgical decompression is recommended.
Cauda equina syndrome of sudden onset is regarded as a medical/surgical emergency. Surgical decompression by means of laminectomy or other approaches may be undertaken within 6, 24 or 48 hours of symptoms developing if a compressive lesion, e.g., ruptured disc, epidural abscess, tumour or haematoma is demonstrated. Early treatment may significantly improve the chance that long-term neurological damage will be avoided.
Surgery may be required to remove blood, bone fragments, a tumor or tumors, a herniated disc or an abnormal bone growth. If the tumor cannot be removed surgically and it is malignant then radiotherapy may be used as an alternative to relieve pressure, with spinal neoplasms chemotherapy can also be used. If the syndrome is due to an inflammatory condition e.g., ankylosing spondylitis, anti-inflammatory, including steroids can be used as an effective treatment. If a bacterial infection is the cause then an appropriate course of antibiotics can be used to treat it.
Cauda equina syndrome can occur during pregnancy due to lumbar disc herniation; age of mother increases the risk. Surgery can still be performed and the pregnancy does not adversely affect treatment. Treatment for those with cauda equina can and should be carried out at any time during pregnancy.
Lifestyle issues may need to be addressed post - treatment. Issues could include the patients need for physiotherapy and occupational therapy due to lower limb dysfunction. Obesity might also need to be tackled.
Physical therapy can be somewhat useful for patient’s recovery from surgery. The main focus of rehabilitation is centered on controlling the bladder and bowel functions and decreasing muscle weakness in the lower extremities.