Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Aortic dissection generally presents as a hypertensive emergency, and the prime consideration of medical management is strict blood pressure control. The target blood pressure should be a mean arterial pressure (MAP) of 60 to 75 mmHg, or the lowest blood pressure tolerated. Initial decreases should be by about 20%.
Another factor is to reduce the shear-force dP/dt (force of ejection of blood from the left ventricle). Long-term management of physical, emotional, and psychological stresses are important to controlling blood pressure.
Beta blockers are the first-line treatment for patients with acute and chronic aortic dissection. In acute dissection, fast-acting agents which can be given intravenously and have doses that are easier to adjust (such as esmolol, propranolol, or labetalol) are preferred. Vasodilators such as sodium nitroprusside can be considered for people with ongoing high blood pressure, but they should never be used alone, as they often stimulate a reflexive increase in the heart rate.
Calcium channel blockers can be used in the treatment of aortic dissection, particularly if a contraindication to the use of beta blockers exists. The calcium channel blockers typically used are verapamil and diltiazem, because of their combined vasodilator and negative inotropic effects.
If the individual has refractory hypertension (persistent hypertension on the maximum doses of three different classes of antihypertensive agents), an involvement of the renal arteries in the aortic dissection plane should be considered.
Medical therapy of aortic aneurysms involves strict blood pressure control. This does not treat the aortic aneurysm per se, but control of hypertension within tight blood pressure parameters may decrease the rate of expansion of the aneurysm.
The medical management of patients with aortic aneurysms, reserved for smaller aneurysms or frail patients, involves cessation of smoking, blood pressure control, use of statins and occasionally beta blockers. Ultrasound studies are obtained on a regular basis (i.e. every six or 12 months) to follow the size of the aneurysm.
Surgery (open or endovascular) is the definite treatment of an aortic aneurysm. Medical therapy is typically reserved for smaller aneurysms or for elderly, frail patients where the risks of surgical repair exceed the risks of non-operative therapy (observation alone).
The size cut off for aortic aneurysm is crucial to its treatment. A thoracic aorta greater than 4.5 cm is generally defined as aneurysmal, while a size greater than 6 cm is the distinction for treatment, which can be either endovascular or surgical, with the former reserved for pathology at the descending aorta.
Indication for surgery may depend upon the size of the aneurysm. Aneurysms in the ascending aorta may require surgery at a smaller size than aneurysms in the descending aorta.
Treatment may be via open or via endovascular means.
Aortic ruptures can be repaired surgically via open aortic surgery or using endovascular therapy (EVAR), regardless of cause, just as non-ruptured aortic aneurysms are repaired. An aortic occlusion balloon can be placed to stabilize the patient and prevent further blood loss prior to the induction of anesthesia.
No medical therapy has been found to be effective at decreasing the growth rate or rupture rate of asymptomatic AAAs. Blood pressure and lipids should, however, be treated per usual.
The treatment options for asymptomatic AAA are management, surveillance with a view to eventual repair, and immediate repair. Two modes of repair are available for an AAA: open aneurysm repair, and endovascular aneurysm repair (EVAR). An intervention is often recommended if the aneurysm grows more than 1 cm per year or it is bigger than 5.5 cm. Repair is also indicated for symptomatic aneurysms.
Indications for the surgical treatment of aortic dissection include an acute proximal aortic dissection and an acute distal aortic dissection with one or more complications. Complications include compromise of a vital organ, rupture or impending rupture of the aorta, retrograde dissection into the ascending aorta, and a history of Marfan syndrome or Ehlers-Danlos syndrome.
The objective in the surgical management of aortic dissection is to resect (remove) the most severely damaged segments of the aorta and to obliterate the entry of blood into the false lumen (both at the initial intimal tear and any secondary tears along the vessel). While excision of the intimal tear may be performed, it does not significantly change mortality.
The particular treatment used depends on the segment or segments of aorta involved. Some treatments are:
- Open aortic surgery with replacement of the damaged section of aorta with a tube graft (often made of Dacron) when no damage to the aortic valve is seen
- Bentall procedure — replacement of the damaged section of aorta and replacement of the aortic valve
- David procedure — replacement of the damaged section of aorta and reimplantation of the aortic valve
- Thoracic endovascular aortic repair, a minimally invasive surgical procedure usually combined with on-going medical management
- Replacement of the damaged section of aorta with a sutureless vascular ring connector-reinforced Dacron graft: The vascular ring connector is a titanic ring used as a stent in the vascular graft to achieve a quick, blood-sealed, and sutureless anastomosis. Two furrows on the surface of the ring are for fixation of the vascular graft and the aorta. The tapes used to tie against the ring provide a larger contact surface area than the traditional stitches, thus it provides stronger anastomosis and better surgical results.
A number of comorbid conditions increase the surgical risk of repair of an aortic dissection. These conditions include the following:
- Prolonged preoperative evaluation (increased length of time prior to surgery)
- Advanced age
- Comorbid disease states (e.g.: coronary artery disease)
- Aneurysm leakage
- Cardiac tamponade
- Shock
- Past history of myocardial infarction
- History of kidney failure (either acute or chronic kidney failure)
Type 1 and Type 2 FAD call for the same treatment: immediate surgery to replace the aorta. Surgery is required due to the high risk of mortality. Type 3 is less severe and requires the maintenance of blood pressure through diet and exercise. Upon diagnosing someone with FAD intravenous antihypertensive treatment is frequently used. Often intravenous sodium nitroprusside is used for its efficiency in lessening the pulsatile load thus reducing blood pressure. Reducing this force slows the progression of the dissection. Surgical success depends on age, severity of symptoms, postoperative organ dysfunction and stroke. Surgical intervention is always indicated in Type 1 cases. Aortic surgery is palliative, not curative. The goal is to merely to prevent rupture, restore blood flow, and fix any aortic valve dysfunction. Post operative protocols include frequent monitoring of the aorta diameter. Statins and beta blockers are also popular treatments used to reduce future plaque build up and blockage of epinephrine receptors as a way to control heart rate and blood pressure.
Long term treatment should also include regular check ups every 3 to 6 months. A CT scan or MRI is recommended, along with required chest x-rays. Antihypertensive therapy with beta adrenergic antagonists is required regardless of medical versus surgical treatment. Ten to twenty percent of those who choose surgical intervention are re-operated on due to compression, aneurysm development or blood leakage.
Medical therapy of aneurysm of the aortic sinus includes blood pressure control through the use of drugs, such as beta blockers.
Another approach is surgical repair. The determination to perform surgery is usually based upon the diameter of the aortic root (with 5 centimeters being a rule of thumb - a normal size is 2-3 centimeters) and the rate of increase in its size (as determined through repeated echocardiography).
Traumatic aortic rupture is treated with surgery. However, morbidity and mortality rates for surgical repair of the aorta for this condition are among the highest of any cardiovascular surgery. For example, surgery is associated with a high rate of paraplegia, because the spinal cord is very sensitive to ischemia (lack of blood supply), and the nerve tissue can be damaged or killed by the interruption of the blood supply during surgery.
A less invasive option for treatment is endovascular repair, which does not require open thoracotomy and can be safer for people with other injuries to organs.
Since high blood pressure could exacerbate an incomplete tear in the aorta or even separate it completely from the heart, which would almost inevitably kill the patient, hospital staff take measures to keep the blood pressure low. Such measures include giving pain medication, keeping the patient calm, and avoiding procedures that could cause gagging or vomiting. Beta blockers and vasodilators can be given to lower the blood pressure, and intravenous fluids that might normally be given are foregone to avoid raising it.
The treatment for myocardial rupture is supportive in the immediate setting and surgical correction of the rupture, if feasible. A certain small percentage of individuals do not seek medical attention in the acute setting and survive to see the physician days or weeks later. In this setting, it may be reasonable to treat the rupture medically and delay or avoid surgery completely, depending on the individual's comorbid medical issues.
Historically, the treatment of arterial aneurysms has been limited to either surgical intervention, or watchful waiting in combination with control of blood pressure. In recent years, endovascular or minimally invasive techniques have been developed for many types of aneurysms. Aneurysm Clips are used for surgical procedure i.e. clipping of aneurysms.
There are currently two treatment options for brain aneurysms: surgical clipping or endovascular coiling. There is currently debate in the medical literature about which treatment is most appropriate given particular situations.
Surgical clipping was introduced by Walter Dandy of the Johns Hopkins Hospital in 1937. It consists of a craniotomy to expose the aneurysm and closing the base or neck of the aneurysm with a clip. The surgical technique has been modified and improved over the years.
Endovascular coiling was introduced by Guido Guglielmi at UCLA in 1991. It consists of passing a catheter into the femoral artery in the groin, through the aorta, into the brain arteries, and finally into the aneurysm itself. Platinum coils initiate a clotting reaction within the aneurysm that, if successful fill the aneurysm dome and prevent its rupture. Flow diverter can be used but not without complications sometimes.
Currently, there is controversy over whether or not inheritance truly plays a role in FAD, and if so which gene it acts upon. FAD does not come from strictly one predisposing factor, such as hypertension. It is suggested that the combination of environmental factors along with genetics may contribute to causing FAD. Before newer and more effective cures and therapies can be developed, first the specific gene mutation must be identified. Until such a gene is determined, scientists say patient education, and physician awareness is vital. Currently scientists have found animal models to be beneficial in understanding the pathology behind FAD. In the future there is hope to develop drugs that will better support and strengthen the aortic wall. Endovascular methods of treatment are becoming increasingly popular, and scientists hope to use this technique in both acute and chronic cases.
The incidence of myocardial rupture has decreased in the era of urgent revascularization and aggressive pharmacological therapy for the treatment of an acute myocardial infarction. However, the decrease in the incidence of myocardial rupture is not uniform; there is a slight increase in the incidence of rupture if thrombolytic agents are used to abort a myocardial infarction. On the other hand, if primary percutaneous coronary intervention is performed to abort the infarction, the incidence of rupture is significantly lowered. The incidence of myocardial rupture if PCI is performed in the setting of an acute myocardial infarction is about 1 percent.
The effect of statins on the progression of AS is unclear. The latest trials do not show any benefit in slowing AS progression, but did demonstrate a decrease in ischemic cardiovascular events.
In general, medical therapy has relatively poor efficacy in treating aortic stenosis. However, it may be useful to manage commonly coexisting conditions that correlate with aortic stenosis:
- Any angina is generally treated with beta-blockers and/or calcium blockers. Nitrates are contraindicated due to their potential to cause profound hypotension in aortic stenosis.
- Any hypertension is treated aggressively, but caution must be taken in administering beta-blockers.
- Any heart failure is generally treated with digoxin and diuretics, and, if not contraindicated, cautious administration of ACE inhibitors.
While observational studies demonstrated an association between lowered cholesterol with statins and decreased progression, a randomized clinical trial published in 2005 failed to find any effect on calcific aortic stenosis. A 2007 study did demonstrate a slowing of aortic stenosis with the statin rosuvastatin.
When discovered, hemopericardium is usually treated by pericardiocentesis, a procedure wherein a needle is used to remove the fluid from the pericardial sac. This procedure typically utilizes an 8-cm, 18-gauge needle that is inserted between the xiphoid process and the left costal margin until it enters the pericardial sac, when it can then be used to drain the fluid from the sac. A catheter is often left in the pericardium to continue draining any remaining fluid after the initial procedure. The catheter can be removed when the hemopericardium no longer persists. The underlying causes of the condition, such as over-prescription of anticoagulants, must be addressed as well so that the hemopericardium does not return.
While hemopericardium itself is not fatal, it may lead to cardiac tamponade, which can be deadly if not treated promptly. One study found that cardiac tamponade was fatal in 13.3% of cases in which it was not caused by a malignant disease.
Mortality from aortic rupture is up to 90%. 65–75% of patients die before they arrive at hospital and up to 90% die before they reach the operating room.
Medical therapy of chronic aortic insufficiency that is stable and asymptomatic involves the use of vasodilators. Trials have shown a short term benefit in the use of ACE inhibitors or angiotensin II receptor antagonists, nifedipine, and hydralazine in improving left ventricular wall stress, ejection fraction, and mass. The goal in using these pharmacologic agents is to decrease the afterload so that the left ventricle is somewhat spared. The regurgitant fraction may not change significantly, since the gradient between the aortic and left ventricular pressures is usually fairly low at the initiation of treatment. Other rather conservative medical treatments for stable and asymptomatic cases include low sodium diet, diuretics, digoxin, calcium blockers and avoiding very strenuous activity.
As of 2007, the American Heart Association no longer recommends antibiotics for endocarditis prophylaxis before certain procedures in patients with aortic insufficiency. Antibiotic prophylaxis to prevent endocarditis before gastrointestinal or genitourinary procedures is no longer recommended for any patient with valvular disease. Cardiac stress test is useful in identifying individuals that may be best suited for surgical intervention. Radionuclide angiography is recommended and useful when the systolic wall stress is calculated and combined to the results.
A surgical treatment for AI is aortic valve replacement; this is currently an open-heart procedure. In the case of severe "acute" aortic insufficiency, all individuals should undergo surgery, if there are no absolute contraindications (for surgery). Individuals with bacteremia with aortic valve endocarditis should not wait for treatment with antibiotics to take effect, given the high mortality associated with the acute AI. Replacement with an aortic valve homograft should be performed if feasible.
Treatment is generally not necessary in people without symptoms. In moderate cases, echocardiography is performed every 1–2 years to monitor the progression, possibly complemented with a cardiac stress test. In severe cases, echocardiography is performed every 3–6 months. In both moderate and mild cases, the person should immediately make a revisit or be admitted for inpatient care if any new related symptoms appear. There are no therapeutic options currently available to treat people with aortic valve stenosis; however, studies have indicated that the disease occurs as a result of active cellular processes, suggesting that targeting these processes may lead to viable therapeutic approaches.
Hemopericardium has been reported to result from various afflictions including chest trauma, free wall rupture after a myocardial infarction, bleeding into the pericardial sac following a type A aortic dissection, and as a complication of invasive cardiac procedures. Acute leukemia has also been reported as a cause of the condition. Several cases of hemopericardium have also been reported as a side-effect of anticoagulants. Patients should be made aware of this fact when prescribed these drugs.
Surgical treatment involves resection of the stenosed segment and re-anastomsis. Two complications specific to this surgery are Left recurrent nerve palsy and chylothorax, as the recurrent laryngeal nerve and thoracic duct are in the vicinity. Chylothorax is a troublesome complication and is usually managed conservatively by adjusting the diet to eliminate long chain fatty acids and supplementing medium chain triglycerides. When conservative management fails surgical intervention is required. Fluorescein dye can aid in the localisation of chyle leak.
Treatment consists of open heart surgery soon after birth. Awaiting surgery, prostaglandin can be administered to keep the ductus arteriosus open, thereby allowing blood flow to the lower body. Failure to treat the condition yields a mortality rate of 90% at a median age of 4 days.