Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most people with Takayasu’s arteritis respond to steroids such as prednisone. The usual starting dose is approximately 1 milligram per kilogram of body weight per day (for most people, this is approximately 60 milligrams a day). Because of the significant side effects of long-term high-dose prednisone use, the starting dose is tapered over several weeks to a dose which controls symptoms while limiting the side effects of steroids.
Promising results are achieved with mycophenolate and tocilizumab. If treatment is not kept to a high standard, long-term damage or death can occur.
For patients who do not respond to steroids may require revascularization, either via vascular bypass or angioplasty and stenting. Outcomes following revascularization vary depending on the severity of the underlying disease
The first-line treatment for arteritis is oral glucocorticoid (steroid) medication, such as prednisone, taken daily for a period of three months. After this initial phase, the medication may be reduced in dose or frequency, e.g. every other day, if possible. If the disease worsens with the new treatment schedule, a cytotoxic medication may be given, in addition to the glucocorticoid. Commonly used cytotoxic agents include azathioprine, methotrexate, or cyclophosphamide. The dose of glucocorticoid medication may be decreased if response to treatment is good. This medication may be reduced gradually once the disease becomes inactive, slowly tapering the dose (to allow the body time to adjust) until the medication may be stopped completely. Conversely, if the disease remains active, the medication will need to be increased. After six months, if the medication cannot be reduced in frequency to alternate days, or if in 12 months the medications cannot be stopped completely, then treatment is deemed to have failed.
Pulsed therapy is an alternative method of administering the medications above, using much higher doses over a short period of time (a pulse), to reduce the inflammation within the arteries. Methylprednisolone, a glucocorticoid, is often used for pulse therapy; cyclophosphamide is an alternative. This method has been shown to be successful for some patients. Immunosuppressive pulse therapy, such as with cyclophosphamide, has also demonstrated relief of symptoms associated with arteritis.
Corticosteroids, typically high-dose prednisone (1 mg/kg/day), must be started as soon as the diagnosis is suspected (even before the diagnosis is confirmed by biopsy) to prevent irreversible blindness secondary to ophthalmic artery occlusion. Steroids do not prevent the diagnosis from later being confirmed by biopsy, although certain changes in the histology may be observed towards the end of the first week of treatment and are more difficult to identify after a couple of months. The dose of prednisone is lowered after 2–4 weeks, and slowly tapered over 9–12 months. Tapering may require two or more years. Oral steroids are at least as effective as intravenous steroids, except in the treatment of acute visual loss where intravenous steroids appear to offer significant benefit over oral steroids. It is unclear if adding a small amount of aspirin is beneficial or not as it has not been studied.
Treatments are generally directed toward stopping the inflammation and suppressing the immune system. Typically, corticosteroids such as prednisone are used. Additionally, other immune suppression drugs, such as cyclophosphamide and others, are considered. In case of an infection, antimicrobial agents including cephalexin may be prescribed. Affected organs (such as the heart or lungs) may require specific medical treatment intended to improve their function during the active phase of the disease.
Treatment of aortitis depends on the underlying cause. Infectious causes commonly require antibiotic treatment, while those associated with autoimmune vasculitides are generally treated with steroids.
Management includes the following treatment priorities: stop the inflammation, treat complications, prevent and monitor for re-occurrence.
Treatment is targeted to the underlying cause. However, most vasculitis in general are treated with steroids (e.g. methylprednisolone) because the underlying cause of the vasculitis is due to hyperactive immunological damage. Immunosuppressants such as cyclophosphamide and azathioprine may also be given.
A systematic review of antineutrophil cytoplasmic antibody (ANCA) positive vasculitis identified best treatments depending on whether the goal is to induce remission or maintenance and depending on severity of the vasculitis.
Prednisone is the drug of choice for PMR, and treatment duration is frequently greater than one year. If the patient does not experience dramatic improvement after three days of 10–20 mg oral prednisone per day, the diagnosis should be reconsidered. Sometimes relief of symptoms occurs in only several hours.
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen are ineffective in the initial treatment of PMR, but they may be used in conjunction with the maintenance dose of corticosteroid.
Along with medical treatment, patients are encouraged to exercise and eat healthily--helping to maintain a strong immune system and build strong muscles and bones. A diet of fruits, vegetables, whole grains, and low-fat meat and dairy products, avoiding foods with high levels of refined sugars and salt is recommended.
Takayasu's arteritis (also known as Takayasu's disease, "aortic arch syndrome," "nonspecific aortoarteritis," and "pulseless disease") is a form of large vessel granulomatous vasculitis with massive intimal fibrosis and vascular narrowing, most commonly affecting often young or middle-age women of Asian descent, though anyone can be affected. It mainly affects the aorta (the main blood vessel leaving the heart) and its branches, as well as the pulmonary arteries. Females are about 8–9 times more likely to be affected than males.
Those with the disease often notice symptoms between 15 and 30 years of age. In the Western world, atherosclerosis is a more frequent cause of obstruction of the aortic arch vessels than Takayasu's arteritis. Takayasu's arteritis is similar to other forms of vasculitis, including giant cell arteritis which typically affects older individuals. Due to obstruction of the main branches of the aorta, including the left common carotid artery, the brachiocephalic artery, and the left subclavian artery, Takayasu's arteritis can present as pulseless upper extremities (arms, hands, and wrists with weak or absent pulses on the physical examination) which may be why it is also commonly referred to as the "pulseless disease." Involvement of renal arteries may lead to a presentation of renovascular hypertension.
Arteritis is the inflammation of the walls of arteries, usually as a result of infection or autoimmune response. Arteritis, a complex disorder, is still not entirely understood. Arteritis may be distinguished by its different types, based on the organ systems affected by the disease. A complication of arteritis is thrombosis, which can be fatal. Arteritis and phlebitis are forms of vasculitis.
If untreated, has three distinct phases. The first is a prepulseless inflammatory stage with nonspecific symptoms such as fatigue, arthralgias, and low-grade fevers. Phase two includes vascular inflammation with pain secondary to the condition, along with tenderness to palpation over the site. The last phase includes symptoms of ischemia and pain associated with the use of limbs. Limbs are also cool and clammy in this stage.
Giant-cell arteritis (GCA), also called temporal arteritis, is an inflammatory disease of blood vessels. Symptoms may include headache, pain over the temples, flu-like symptoms, double vision, and difficulty opening the mouth. Complication can include blockage of the artery to the eye with resulting blindness, aortic dissection, and aortic aneurysm. GCA is frequently associated with polymyalgia rheumatica.
The cause is unknown. The underlying mechanism involves inflammation of the small blood vessels that occur within the walls of larger arteries. This mainly affects arteries around the head and neck, though some in the chest may also be affected. Diagnosis is suspected based on symptoms, blood tests, and medical imaging, and confirmed by biopsy of the temporal artery. However, in about 10% of people the temporal artery is normal.
Treatment is typically with high doses of steroids, such as prednisone. Once symptoms have resolved the dose is then decreased by about 15% per month. Once a low dose is reached, the taper is slowed further over the subsequent year. Other medications that may be recommended include bisphosphonates to prevent bone loss and a proton pump inhibitor to prevent stomach problems.
It affects about 1 in 15,000 people over the age of 50 a year. The condition typically only occurs in those over the age of 50 being most common among those in their 70s. Females are more often affected than males. Those of northern European descent are more commonly affected. Life expectancy is typically normal. The first description of the condition occurred in 1890.
AAION requires urgent and critical intervention with a very long course of corticosteroids to prevent further damage. While this treatment is in itself problematic, non-treatment leads to bilateral blindness and strokes.
There is much research currently underway looking at ways to protect the nerve (neuroprotection) or even regenerate new fibers within the optic nerve.
Options include:
- Medications alone (an antiplatelet drug (or drugs) and control of risk factors for atherosclerosis).
- Medical management plus carotid endarterectomy or carotid stenting, which is preferred in patients at high surgical risk and in younger patients.
- Control of smoking, high blood pressure, and high levels of lipids in the blood.
The goal of treatment is to reduce the risk of stroke (cerebrovascular accident). Intervention (carotid endarterectomy or carotid stenting) can cause stroke; however, where the risk of stroke from medical management alone is high, intervention may be beneficial. In selected trial participants with asymptomatic severe carotid artery stenosis, carotid endarterectomy reduces the risk of stroke in the next 5 years by 50%, though this represents a reduction in absolute incidence of all strokes or perioperative death of approximately 6%. In most centres, carotid endarterectomy is associated with a 30-day stroke or mortality rate of < 3%; some areas have higher rates.
Clinical guidelines (such as those of National Institute for Clinical Excellence (NICE) ) recommend that all patients with carotid stenosis be given medication, usually blood pressure lowering medications, anti-clotting medications, anti-platelet medications (such as aspirin or clopidogrel), and especially statins (which were originally prescribed for their cholesterol-lowering effects but were also found to reduce inflammation and stabilize plaque).
NICE and other guidelines also recommend that patients with "symptomatic" carotid stenosis be given carotid endarterectomy urgently, since the greatest risk of stroke is within days. Carotid endarterectomy reduces the risk of stroke or death from carotid emboli by about half.
For people with stenosis but no symptoms, the interventional recommendations are less clear. Such patients have a historical risk of stroke of about 1-2% per year. Carotid endarterectomy has a surgical risk of stroke or death of about 2-4% in most institutions. In the large Asymptomatic Carotid Surgery Trial (ACST) endarterectomy reduced major stroke and death by about half, even after surgical death and stroke was taken into account. According to the Cochrane Collaboration the absolute benefit of surgery is small. For intervention using stents, there is insufficient evidence to support stenting rather than open surgery, and several trials, including the ACST-2, are comparing these 2 procedures.
The definitive treatment for Heyde's syndrome is surgical replacement of the aortic valve. Recently, it has been proposed that transcatheter aortic valve implantation (TAVI) can also be used for definitive management. Direct surgical treatment of the bleeding (e.g. surgical resection of the bleeding portion of the bowel) is only rarely effective.
Medical management of symptoms is possible also, although by necessity temporary, as definitive surgical management is required to bring levels of von Willebrand factor back to normal. In severe bleeding, blood transfusions and IV fluid infusions can be used to maintain blood pressure. In addition, desmopressin (DDAVP) is known to be effective in people with von Willebrand's disease, including people with valvular heart disease. Desmopressin stimulates release of von Willebrand factor from blood vessel endothelial cells by acting on the V2 receptor, which leads to decreased breakdown of Factor VIII. Desmopressin is thus sometimes used directly to treat mild to moderate acquired von Willebrand's disease and is an effective prophylactic agent for the reduction of bleeding during heart valve replacement surgery.
The largest clinical trial performed, CREST, randomized patients at risk for a stroke from carotid artery blockage to either open surgery (carotid endarterectomy) or carotid stent placement with embolic protection. This trial followed patients for 4 years and found no overall difference in the primary end point of both treatment arms (myocardial infarctions, any perioperative strokes or ipsilateral strokes within 4 years, or death during procedure). Patients assigned to the surgical arm experienced more perioperative myocardial infarctions compared to the stenting group; however, the difference was not statistically significant (6.8% vs or 7.2% HR for stenting is 1.1 CI 0.81-1.51 P value 0.51) whereas patients assigned to the carotid stent arm experienced more periprocedural strokes compared to endarteretomy (6.4% vs 4.7% HR for stenting 1.5 P-0.03). There was no mortality difference and no difference for major (disabling) strokes between surgery and stenting. It was noted that there did seem to exist an age cutoff where below 75 years old endarterectomy provided more positive outcomes and over 75 stenting offered a better risk profile. However, it should be noted that the CREST trial was not designed for subgroup analysis and thus not powered enough to draw any statistically significant conclusions. A later study published in 2013 evaluated how these perioperative complications affect long-term survival. This study showed that experiencing a stroke within the first year conferred a two-fold lower survival rate (Hazard Ratio(HR) 6.6 [CI 3.7-12]) than those who experienced a perioperative myocardial infarction at two years post intervention (HR 3.6 [CI 2-6.8]). This difference in mortality, however, converges and becomes negligible at 5 years (HR 2.7 [CI 1.7-4.3] vs HR 2.8 [CI 1.8-4.3]). A 2010 study found benefits (reduced strokes) from carotid endarterectomy in those without symptoms who are under 75.
Type 1 and Type 2 FAD call for the same treatment: immediate surgery to replace the aorta. Surgery is required due to the high risk of mortality. Type 3 is less severe and requires the maintenance of blood pressure through diet and exercise. Upon diagnosing someone with FAD intravenous antihypertensive treatment is frequently used. Often intravenous sodium nitroprusside is used for its efficiency in lessening the pulsatile load thus reducing blood pressure. Reducing this force slows the progression of the dissection. Surgical success depends on age, severity of symptoms, postoperative organ dysfunction and stroke. Surgical intervention is always indicated in Type 1 cases. Aortic surgery is palliative, not curative. The goal is to merely to prevent rupture, restore blood flow, and fix any aortic valve dysfunction. Post operative protocols include frequent monitoring of the aorta diameter. Statins and beta blockers are also popular treatments used to reduce future plaque build up and blockage of epinephrine receptors as a way to control heart rate and blood pressure.
Long term treatment should also include regular check ups every 3 to 6 months. A CT scan or MRI is recommended, along with required chest x-rays. Antihypertensive therapy with beta adrenergic antagonists is required regardless of medical versus surgical treatment. Ten to twenty percent of those who choose surgical intervention are re-operated on due to compression, aneurysm development or blood leakage.
Quick determination of the cause may lead to urgent measures to save the eye and life of the patient. High clinical suspicion should be kept for painless vision loss in patients with atherosclerosis, deep venous thrombosis, atrial fibrillation, pulmonary thromboembolism or other previous embolic episodes. Those caused by a carotid artery embolism or occlusion have the potential for further stroke by detachment of embolus and migration to an end-artery of the brain. Hence, proper steps to prevent such an eventuality need to be taken.
Retinal arterial occlusion is an ophthalmic emergency, and prompt treatment is essential. Completely anoxic retina in animal models causes irreversible damage in about 90 minutes. Nonspecific methods to increase blood flow and dislodge emboli include digital massage, 500 mg IV acetazolamide and 100 mg IV methylprednisolone (for possible arteritis). Additional measures include paracentesis of aqueous humor to decrease IOP acutely. An ESR should be drawn to detect possible giant cell arteritis. Improvement can be determined by visual acuity, visual field testing, and by ophthalmoscopic examination.
At a later stage, pan-retinal photocoagulation (PRP) with an argon laser appears effective in reducing the neovascular components and their sequelae.
The visual prognosis for ocular ischemic syndrome varies from usually poor to fair, depending on speed and effectiveness of the intervention. However, prompt diagnosis is crucial as the condition may be a presenting sign of serious cerebrovascular and ischemic heart diseases.
In 2009, the Undersea and Hyperbaric Medical Society added "central retinal artery occlusion" to their list of approved indications for hyperbaric oxygen (HBO). When used as an adjunctive therapy, the edema reducing properties of HBO, along with down regulation of inflammatory cytokines may contribute to the improvement in vision. Prevention of vision loss requires that certain conditions be met: the treatment be started before irreversible damage has occurred (over 24 hours), the occlusion must not also occur at the ophthalmic artery, and treatment must continue until the inner layers of the retina are again oxygenated by the retinal arteries.
Vasculitis is a group of disorders that destroy blood vessels by inflammation. Both arteries and veins are affected. Lymphangitis is sometimes considered a type of vasculitis. Vasculitis is primarily caused by leukocyte migration and resultant damage.
Although both occur in vasculitis, inflammation of veins (phlebitis) or arteries (arteritis) are their own are separate entities.
Traumatic aortic rupture is treated with surgery. However, morbidity and mortality rates for surgical repair of the aorta for this condition are among the highest of any cardiovascular surgery. For example, surgery is associated with a high rate of paraplegia, because the spinal cord is very sensitive to ischemia (lack of blood supply), and the nerve tissue can be damaged or killed by the interruption of the blood supply during surgery.
A less invasive option for treatment is endovascular repair, which does not require open thoracotomy and can be safer for people with other injuries to organs.
Since high blood pressure could exacerbate an incomplete tear in the aorta or even separate it completely from the heart, which would almost inevitably kill the patient, hospital staff take measures to keep the blood pressure low. Such measures include giving pain medication, keeping the patient calm, and avoiding procedures that could cause gagging or vomiting. Beta blockers and vasodilators can be given to lower the blood pressure, and intravenous fluids that might normally be given are foregone to avoid raising it.
Necrotizing vasculitis also called Systemic necrotizing vasculitus (SNV) is a category of vasculitis, comprising vasculitides that present with necrosis.
Examples include giant cell arteritis, microscopic polyangiitis, and granulomatosis with polyangiitis.
ICD-10 uses the variant "necrotizing vasculopathy". ICD-9, while classifying these conditions together, doesn't use a dedicated phrase, instead calling them "polyarteritis nodosa and allied conditions".
When using the influential classification known as the "Chapel Hill Consensus Conference", the terms "systemic vasculitis" or "primary systemic vasculitides" are commonly used. Although the word "necrotizing" is omitted, the conditions described are largely the same.
Inflammatory involvement of tertiary syphilis begins at the adventitia of the aortic arch which progressively causes obliterative endarteritis of the vasa vasorum. This leads to narrowing of the lumen of the vasa vasorum, causing ischemic injury of the medial aortic arch and then finally loss of elastic support and dilation of the vessel. Dissection of the aortic arch is rare due to medial scarring. As a result of this advanced disease process, standard methods of angiography/angioplasty may be impossible for those with suspected coronary heart disease. However, these patients may be candidates for diagnostic CT as a less invasive modality. This disorder is also known eponymously as Heller-Döhle syndrome.
Obliterating endarteritis also called "obliterating arteritis" is severe proliferating endarteritis (inflammation of the intima or inner lining of an artery) that results in an occlusion of the lumen of the artery. Obliterating endarteritis can occur due to a variety of medical conditions such as a complication of radiation poisoning, tuberculosis meningitis or a syphilis infection.
Aortic dissection generally presents as a hypertensive emergency, and the prime consideration of medical management is strict blood pressure control. The target blood pressure should be a mean arterial pressure (MAP) of 60 to 75 mmHg, or the lowest blood pressure tolerated. Initial decreases should be by about 20%.
Another factor is to reduce the shear-force dP/dt (force of ejection of blood from the left ventricle). Long-term management of physical, emotional, and psychological stresses are important to controlling blood pressure.
Beta blockers are the first-line treatment for patients with acute and chronic aortic dissection. In acute dissection, fast-acting agents which can be given intravenously and have doses that are easier to adjust (such as esmolol, propranolol, or labetalol) are preferred. Vasodilators such as sodium nitroprusside can be considered for people with ongoing high blood pressure, but they should never be used alone, as they often stimulate a reflexive increase in the heart rate.
Calcium channel blockers can be used in the treatment of aortic dissection, particularly if a contraindication to the use of beta blockers exists. The calcium channel blockers typically used are verapamil and diltiazem, because of their combined vasodilator and negative inotropic effects.
If the individual has refractory hypertension (persistent hypertension on the maximum doses of three different classes of antihypertensive agents), an involvement of the renal arteries in the aortic dissection plane should be considered.
Currently, there is controversy over whether or not inheritance truly plays a role in FAD, and if so which gene it acts upon. FAD does not come from strictly one predisposing factor, such as hypertension. It is suggested that the combination of environmental factors along with genetics may contribute to causing FAD. Before newer and more effective cures and therapies can be developed, first the specific gene mutation must be identified. Until such a gene is determined, scientists say patient education, and physician awareness is vital. Currently scientists have found animal models to be beneficial in understanding the pathology behind FAD. In the future there is hope to develop drugs that will better support and strengthen the aortic wall. Endovascular methods of treatment are becoming increasingly popular, and scientists hope to use this technique in both acute and chronic cases.
The size cut off for aortic aneurysm is crucial to its treatment. A thoracic aorta greater than 4.5 cm is generally defined as aneurysmal, while a size greater than 6 cm is the distinction for treatment, which can be either endovascular or surgical, with the former reserved for pathology at the descending aorta.
Indication for surgery may depend upon the size of the aneurysm. Aneurysms in the ascending aorta may require surgery at a smaller size than aneurysms in the descending aorta.
Treatment may be via open or via endovascular means.