Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Chlorambucil is a chemotherapy drug normally used to treat leukemia as it is often used as an immunosuppressant drug, and prednisone is a steroid that has also been found to be particularly effective as an immunosuppressant. This combination of drugs has minimal to no benefits in most patients, but a small number do see small improvements such as decreased tremors. This combination has not been very effective in more severe cases, though, and is not considered a long term therapy.
Cyclophosphamide is a drug often used in the treatment of lymphomas and works by slowing or stopping cell growth. It also works as an immunosuppressant by decreasing the body’s immune response to various diseases and conditions. This drug has been found to make significant improvements in people with anti-MAG neuropathy by relieving sensory loss and helping to improve quality of life in a few short months. There is, however, a risk of cancer because of this treatment and is therefore not used on a regular basis.
First-line treatment for CIDP is currently intravenous immunoglobulin (IVIG) and other treatments include corticosteroids (e.g. prednisone), and plasmapheresis (plasma exchange) which may be prescribed alone or in combination with an immunosuppressant drug. Recent controlled studies show subcutaneous immunoglobin (SCIG) appears to be as effective for CIDP treatment as IVIG in most patients, and with fewer systemic side effects.
IVIG and plasmapheresis have proven benefit in randomized, double-blind, placebo-controlled trials. Despite less definitive published evidence of efficacy, corticosteroids are considered standard therapies because of their long history of use and cost effectiveness. IVIG is probably the first-line CIDP treatment, but is extremely expensive. For example, in the U.S., a single 65 g dose of Gamunex brand in 2010 might be billed at the rate of $8,000 just for the immunoglobulin—not including other charges such as nurse administration. Gamunex brand IVIG is the only U.S. FDA approved treatment for CIDP, as in 2008 Talecris, the maker of Gamunex, received orphan drug status for this drug for the treatment of CIDP.
Immunosuppressive drugs are often of the cytotoxic (chemotherapy) class, including rituximab (Rituxan) which targets B cells, and cyclophosphamide, a drug which reduces the function of the immune system. Ciclosporin has also been used in CIDP but with less frequency as it is a newer approach. Ciclosporin is thought to bind to immunocompetent lymphocytes, especially T-lymphocytes.
Non-cytotoxic immunosuppressive treatments usually include the anti-rejection transplant drugs azathioprine (Imuran/Azoran) and mycophenolate mofetil (Cellcept). In the U.S., these drugs are used as "off-label" treatments for CIDP, meaning that their use here is accepted by the FDA, but that CIDP treatment is not explicitly indicated or approved in the drug literature. Before azathioprine is used, the patient should first have a blood test that ensures that azathioprine can safely be used.
Anti-thymocyte globulin (ATG), an immunosuppressive agent that selectively destroys T lymphocytes is being studied for use in CIDP. Anti-thymocyte globulin is the gamma globulin fraction of antiserum from animals that have been immunized against human thymocytes. It is a polyclonal antibody.
Although chemotherapeutic and immunosuppressive agents have shown to be effective in treating CIDP, significant evidence is lacking, mostly due to the heterogeneous nature of the disease in the patient population in addition to the lack of controlled trials.
A review of several treatments found that azathioprine, interferon alpha and methotrexate were not effective. Cyclophosphamide and rituximab seem to have some response. Mycophenolate mofetil may be of use in milder cases. Immunoglobulin and steroids are the first line choices for treatment. Rarely bone marrow transplantation has been performed.
Physical therapy and occupational therapy may improve muscle strength, activities of daily living, mobility, and minimize the shrinkage of muscles and tendons and distortions of the joints.
Two small randomized controlled trials (RCTs) and one larger RCT (86 subjects) tested glutamine in the prevention of platinum treatment-induced neuropathy and showed promise. As of September 2013 a larger, placebo-controlled trial is running.
A 2013 systematic review of the use of acetyl-L-carnitine, glutamine, vitamin E, glutathione, vitamin B6, omega-3 fatty acids, magnesium, calcium, alpha lipoic acid and n-acetyl cysteine as anti-CIPN adjuvants concluded that "currently no agent has shown solid beneficial evidence to be recommended for the treatment or prophylaxis of CIPN."
In a study of patients receiving oxaliplatin treatment, only 4 percent of those also receiving intravenous calcium and magnesium (ca/mg) before and after each oxaliplatin dose had to discontinue treatment due to neurotoxicity, compared to 33 percent who were receiving intravenous placebo; onset of neuropathy was also significantly delayed in the ca/mg patients, and only 22 percent of the ca/mg patients had long-term CIPN of grade 2 or worse compared with 41 percent of those on placebo. Overall, trials of ca/mg infusion suggest there are no serious harmful side effects and it may be an effective preventative therapy — the number of patients so far studied is small, however, and confident conclusions cannot be drawn.
A range of medications that act on the central nervous system has been found to be useful in managing neuropathic pain. Commonly used treatments include tricyclic antidepressants (such as nortriptyline or amitriptyline), the serotonin-norepinephrine reuptake inhibitor (SNRI) medication duloxetine, and antiepileptic therapies such as gabapentin, pregabalin, or sodium valproate. Few studies have examined whether nonsteroidal anti-inflammatory drugs are effective in treating peripheral neuropathy.
Symptomatic relief for the pain of peripheral neuropathy may be obtained by application of topical capsaicin. Capsaicin is the factor that causes heat in chili peppers. The evidence suggesting that capsaicin applied to the skin reduces pain for peripheral neuropathy is of moderate to low quality and should be interpreted carefully before using this treatment option. Local anesthesia often is used to counteract the initial discomfort of the capsaicin. Some current research in animal models has shown that depleting neurotrophin-3 may oppose the demyelination present in some peripheral neuropathies by increasing myelin formation.
High-quality evidence supports the use of cannabis for neuropathic pain.
Treatment is based on the underlying cause, if any. Where the likely underlying condition is known, treatment of this condition is indicated treated to reduce progression of the disease and symptoms. For cases without those conditions, there is only symptomatic treatment.
Multifocal motor neuropathy is normally treated by receiving intravenous immunoglobulin (IVIG), which can in many cases be highly effective, or immunosuppressive therapy with cyclophosphamide or rituximab. Steroid treatment (prednisone) and plasmapheresis are no longer considered to be useful treatments; prednisone can exacerbate symptoms. IVIg is the primary treatment, with about 80% of patients responding, usually requiring regular infusions at intervals of 1 week to several months. Other treatments are considered in case of lack of response to IVIg, or sometimes because of the high cost of immunoglobulin. Subcutaneous immunoglobulin is under study as a less invasive, more-convenient alternative to IV delivery.
Treatment typically involves improving the patient's quality of life. This is accomplished through the management of symptoms or slowing the rate of demyelination. Treatment can include medication, lifestyle changes (i.e. quit smoking, adjusting daily schedules to include rest periods and dietary changes), counselling, relaxation, physical exercise, patient education and, in some cases, deep brain thalamic stimulation (in the case of tremors). The progressive phase of MS appears driven by the innate immune system, which will directly contribute to the neurodegenerative changes that occur in progressive MS. Until now, there are no therapies that specifically target innate immune cells in MS. As the role of innate immunity in MS becomes better defined, it may be possible to better treat MS by targeting the innate immune system.
Treatments are patient-specific and depend on the symptoms that present with the disorder, as well as the progression of the condition.
The treatment of peripheral neuropathy varies based on the cause of the condition, and treating the underlying condition can aid in the management of neuropathy. When peripheral neuropathy results from diabetes mellitus or prediabetes, blood sugar management is key to treatment. In prediabetes in particular, strict blood sugar control can significantly alter the course of neuropathy. In peripheral neuropathy that stems from immune-mediated diseases, the underlying condition is treated with intravenous immunoglobulin or steroids. When peripheral neuropathy results from vitamin deficiencies or other disorders, those are treated as well.
No definite standard treatment have been set. This is because treatments of the disease has been poorly studied as of 2014. Often in cases of inflammatory parenchymal disease, "corticosteroids should be given as infusions of
intravenous methylprednisolone followed by a slowly tapering course of oral steroids". It is suggested that therapy should be continued for a period of time even when the symptoms get suppressed because early relapse may occur. Sometimes, the medical doctors may suggest a different steroid depending on the nature of the disease, the severity, and the response to steroids. According to several studies, parenchymal NBD patients successfully suppress the symptoms with the prescribed steroids. As for non-parenchymal patients, there is no general consensus on how to treat the disease. The reason is that the mechanisms of cerebral venous thrombosis in BD are still poorly understood. Some doctors use anti-coagulants to prevent a clot. On the other hand, some doctors only give steroids and immunosuppressants alone.
Treatment of TSP involves corticosteroids to help with inflammation. Though any success with corticosteroids is short-lived, with symptoms worsened as the dosage is reduced. A synthetic derivative, 17-alpha-ethinyltestosterone, can be used to treat Tropical spastic paraparesis, improvement in motor and bladder function was reported but not sustainable.
Mogamulizumab, an anti-CCR4 IgG1 monoclonal antibody, is also being researched as a possible treatment for Tropical spastic paraparesis. The antibody reduces HTLV-1 proviral load and production of proinflammatory cytokines. Valproic acid has also succeeded in reducing the proviral load of HTLV-1 (though clinical benefits were minimal or none). A further combination of valproic acid and zidovudine has demonstrated a decrease in proviral loads (in animals).
There is no current treatment, however management of hereditary neuropathy with liability to pressure palsy can be done via:
- Occupational therapist
- Ankle/foot orthosis
- Wrist splint (medicine)
- Avoid repetitive movements
There is currently no known pharmacological treatment to hereditary motor and sensory neuropathies. However, the majority of people with these diseases are able to walk and be self-sufficient. Some methods of relief for the disease include physical therapy, stretching, braces, and sometimes orthopedic surgery. Since foot disorders are common with neuropathy disorders precautions must be taken to strengthen these muscles and use preventative care and physical therapy to prevent injury and deformities.
Treatment is dependent upon diagnosis and the stage at which the diagnosis is secured. For toxic and nutritional optic neuropathies, the most important course is to remove the offending agent if possible and to replace the missing nutritional elements, orally, intramuscularly, or intravenously. If treatment is delayed, the injury may be irreversible. The course of treatment varies with the congenital forms of these neuropathies. There are some drug treatments that have shown modest success, such as Idebenone used to treat LOHN. Often treatment is relegated to lifestyle alterations and accommodations and supportive measures.
The treatment and management of radial neuropathy can be achieved via the following methods:
- Physical therapy or occupational therapy
- Surgery(depending on the specific area and extent of damage)
- Splinting
It is expected that there will be no new cases of progressive inflammatory neuropathy since the process of aerosolizing the pig brains has been discontinued at all pork processing facilities.
When an underlying medical condition is causing the neuropathy, treatment should first be directed at this condition. For example, if weight gain is the underlying cause, then a weight loss program is the most appropriate treatment. Compression neuropathy occurring in pregnancy often resolves after delivery, so no specific treatment is usually required. Some compression neuropathies are amenable to surgery: carpal tunnel syndrome and cubital tunnel syndrome are two common examples. Whether or not it is appropriate to offer surgery in any particular case depends on the severity of the symptoms, the risks of the proposed operation, and the prognosis if untreated. After surgery, the symptoms may resolve completely, but if the compression was sufficiently severe or prolonged then the nerve may not recover fully and some symptoms may persist. Drug treatment may be useful for an underlying condition (including peripheral oedema), or for ameliorating neuropathic pain.
The treatment of dysautonomia can be difficult; since it is made up of many different symptoms, a combination of drug therapies is often required to manage individual symptomatic complaints. Therefore, if an autoimmune neuropathy is the case, then treatment with immunomodulatory therapies is done, or if diabetes mellitus is the cause, control of blood glucose is important. Treatment can include proton-pump inhibitors and H2 receptor antagonists used for digestive symptoms such as acid reflux.
For the treatment of genitourinary autonomic neuropathy medications may include sildenafil (a guanine monophosphate type-5 phosphodiesterase inhibitor). For the treatment of hyperhidrosis, anticholinergic agents such as trihexyphenidyl or scopolamine can be used, also intracutaneous injection of botulinum toxin type A can be used for management in some cases.
Balloon angioplasty, a procedure referred to as transvascular autonomic modulation, is specifically not approved for the treatment of autonomic dysfunction.
In most MS-associated optic neuritis, visual function spontaneously improves over 2–3 months, and there is evidence that corticosteroid treatment does not affect the long term outcome. However, for optic neuritis that is not MS-associated (or atypical optic neuritis) the evidence is less clear and therefore the threshold for treatment with intravenous corticosteroids is lower. Intravenous corticosteroids also reduce the risk of developing MS in the following two years in patients with MRI lesions; but this effect disappears by the third year of follow up.
Paradoxically, oral administration of corticosteroids in this situation may lead to more recurrent attacks than in non-treated patients (though oral steroids are generally prescribed after the intravenous course, to wean the patient off the medication). This effect of corticosteroids seems to be limited to optic neuritis and has not been observed in other diseases treated with corticosteroids.
A Cochrane Systematic Review studied the effect of corticosteroids for treating people with acute optic neuritis. Specific corticosteroids studied included intravenous and oral methylprednisone, and oral prednisone. The authors conclude that current evidence does not show a benefit of either intravenous or oral corticosteroids for rate of recovery of vision (in terms of visual acuity, contrast sensitivity, or visual fields)..
TCAs include imipramine, amitriptyline, desipramine, and nortriptyline. They are generally regarded as first or second-line treatment for DPN. Of the TCAs, imipramine has been the best studied. These medications are effective at decreasing painful symptoms but suffer from multiple side effects that are dose-dependent. One notable side effect is cardiac toxicity, which can lead to fatal abnormal heart rhythms. Additional common side effects include dry mouth, difficulty sleeping, and sedation. At low dosages used for neuropathy, toxicity is rare, but if symptoms warrant higher doses, complications are more common. Among the TCAs, amitriptyline is most widely used for this condition, but desipramine and nortriptyline have fewer side effects.
As in multiple sclerosis, another demyelinating condition, it is not possible to predict with certainty how CIDP will affect patients over time. The pattern of relapses and remissions varies greatly with each patient. A period of relapse can be very disturbing, but many patients make significant recoveries.
If diagnosed early, initiation of early treatment to prevent loss of nerve axons is recommended. However, many individuals are left with residual numbness, weakness, tremors, fatigue and other symptoms which can lead to long-term morbidity and diminished quality of life.
It is important to build a good relationship with doctors, both primary care and specialist. Because of the rarity of the illness, many doctors will not have encountered it before. Each case of CIDP is different, and relapses, if they occur, may bring new symptoms and problems. Because of the variability in severity and progression of the disease, doctors will not be able to give a definite prognosis. A period of experimentation with different treatment regimens is likely to be necessary in order to discover the most appropriate treatment regimen for a given patient.
Typical opioid medications, such as oxycodone, appear to be no more effective than placebo. In contrast, low-quality evidence supports a moderate benefit from the use of atypical opioids (e.g., tramadol and tapentadol), which also have SNRI properties. Opioid medications are recommended as second or third-line treatment for DPN.
In October 2007 an astute medical interpreter noticed similar neurological symptoms being reported by Spanish-speaking patients seeking treatment from different physicians at the Austin Medical Center, in Austin, Minnesota. Not only did these patients share similar neurological symptoms, they also worked at the same pork processing plant. Dr. Daniel LaChance, a physician at both the Austin Medical Center and the Mayo Clinic in nearby Rochester, Minnesota, was notified. He launched a request to area physicians to refer other patients with similar symptoms to him. The Minnesota Department of Health (MDH) was notified and began an investigation into the "outbreak." The MDH identified workers from two other pork processing plants in Indiana and Nebraska who also had parallel neurological complaints. Several agencies including the Occupational Safety and Health Administration (OSHA) and the Center for Disease Control and Prevention (CDC) were brought in to assist. Simultaneously investigations were conducted to rule out contagious disease, to locate the source or carrier, and to identify what exactly was causing these workers to develop these symptoms.
Removal from exposure was the first line of treatment. Due to progressive sensory loss and weakness, immunotherapy was often required. These treatments included intravenous methylprednisolone, oral prednisone, azathioprine, and/or immunoglobulin. All 24 patients improved, including 7 who received no treatment and 17 who required immunotherapy.
AON is a rare disease and the natural history of the disease process is not well defined. Unlike typical optic neuritis, there is no association with multiple sclerosis, but the visual prognosis for AON is worse than typical optic neuritis. Thus AON patients have different treatment, and often receive chronic immunosuppression. No formal recommendation can be made regarding the best therapeutic approach. However, the available evidence to date supports treatment with corticosteroids and other immunosuppressive agents.
Early diagnosis and prompt treatment with systemic corticosteroids may restore some visual function but the patient may remain steroid dependent; vision often worsens when corticosteroids are tapered. As such, long-term steroid-sparing immunosuppressive agents may be required to limit the side-effects of steroids and minimize the risk of worsening vision.