Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A Cochrane review concluded that "simple maternal hydration appears to increase amniotic fluid volume and may be beneficial in the management of oligohydramnios and prevention of oligohydramnios during labour or prior to external cephalic version."
In severe cases oligohydramnios may be treated with amnioinfusion during labor to prevent umbilical cord compression. There is uncertainty about the procedure's safety and efficacy, and it is recommended that it should only be performed in centres specialising in invasive fetal medicine and in the context of a multidisciplinary team.
In case of congenital lower urinary tract obstruction, fetal surgery seems to improve survival, according to a randomized yet small study.
Reduction in activity by the mother – pelvic rest, limited work, bed rest – may be recommended although there is no evidence it is useful with some concerns it is harmful. Increasing medical care by more frequent visits and more education has not been shown to reduce preterm birth rates. Use of nutritional supplements such as omega-3 polyunsaturated fatty acids is based on the observation that populations who have a high intake of such agents are at low risk for preterm birth, presumably as these agents inhibit production of proinflammatory cytokines. A randomized trial showed a significant decline in preterm birth rates, and further studies are in the making.
A number of agents have been studied for the secondary prevention of indicated preterm birth. Trials using low-dose aspirin, fish oil, vitamin C and E, and calcium to reduce preeclampsia demonstrated some reduction in preterm birth only when low-dose aspirin was used. Interestingly, even if agents such as calcium or antioxidants were able to reduce preeclampsia, a resulting decrease in preterm birth was not observed.
This procedure involves removal of amniotic fluid periodically throughout the pregnancy under the assumption that the extra fluid in the recipient twin can cause preterm labor, perinatal mortality, or tissue damage. In the case that the fluid does not reaccumulate, the reduction of amniotic fluid stabilizes the pregnancy. Otherwise the treatment is repeated as necessary. There is no standard procedure for how much fluid is removed each time. There is a danger that if too much fluid is removed, the recipient twin could die. This procedure is associated with a 66% survival rate of at least one fetus, with a 15% risk of cerebral palsy and average delivery occurring at 29 weeks gestation.
This procedure involves the tearing of the dividing membrane between fetuses such that the amniotic fluid of both twins mixes under the assumption that pressure is different in either amniotic sac and that its equilibration will ameliorate progression of the disease. It has not been proven that pressures are different in either amniotic sac. Use of this procedure can preclude use of other procedures as well as make difficult the monitoring of disease progression. In addition, tearing the dividing membrane has contributed to cord entanglement and demise of fetuses through physical complications.
Both expectant management (watchful waiting) and an induction of labor (artificially stimulating labor) are considered in this case. 90% of women start labor on their own within 24 hours, and therefore it is reasonable to wait for 12–24 hours as long as there is no risk of infection. However, if labor does not begin soon after the rupture of membranes, an induction of labor is recommended because it reduces rates of infections, decreases the chances that the baby will require a stay in the neonatal intensive care unit (NICU), and does not increase the rate of cesarean sections. If a woman strongly does not want to be induced, watchful waiting is an acceptable option as long as there is no sign of infection, the fetus is not in distress, and she is aware and accepts the risks of prolonged PROM. There is not enough data to show that the use of prophylactic antibiotics (to prevent infection) is beneficial for mothers or babies at or near term. Because of the potential side effects and development of antibiotic resistance, the use of antibiotics without the presence of infection is not recommended in this case.
Turning the baby, technically known as external cephalic version (ECV), is when the baby is turned by gently pressing the mother’s abdomen to push the baby from a bottom first position, to a head first position. ECV does not always work, but it does improve the mother’s chances of giving birth to her baby vaginally and avoiding a cesarean section. The World Health Organisation recommends that women should have a planned cesarean section only if an ECV has been tried and did not work.
Women who have an ECV when they are 36–40 weeks pregnant are more likely to have a vaginal delivery and less likely to have a cesarean section than those who do not have an ECV. Turning the baby before this time makes a head first birth more likely but ECV before the due date can increase the risk of early or premature birth which can cause problems to the baby.
There are treatments that can be used which might affect the success of an ECV. Drugs called beta-stimulant tocolytics help the woman’s muscles to relax so that the pressure during the ECV does not have to be so great. Giving the woman these drugs before the ECV improves the chances of her having a vaginal delivery because the baby is more likely to turn and stay head down. Other treatments such as using sound, pain relief drugs such as epidural, increasing the fluid around the baby and increasing the amount of fluids to the woman before the ECV could all effect its success but there is not enough research to make this clear.
Turning techniques mothers can do at home are referred to Spontaneous Cephalic Version (SCV), this is when the baby can turn without any medical assistance. Some of these techniques include; a knee to chest position, the breech tilt and moxibustion, these can be performed after the mother is 34 weeks pregnant. Although there is not a lot of evidence to support how well these techniques work, it has worked for some mothers.
Treatment depends on the amount of blood loss and the status of the fetus. If the fetus is less than 36 weeks and neither mother or fetus is in any distress, then they may simply be monitored in hospital until a change in condition or fetal maturity whichever comes first.
Immediate delivery of the fetus may be indicated if the fetus is mature or if the fetus or mother is in distress. Blood volume replacement to maintain blood pressure and blood plasma replacement to maintain fibrinogen levels may be needed. Vaginal birth is usually preferred over Caesarean section unless there is fetal distress. Caesarean section is contraindicated in cases of disseminated intravascular coagulation. People should be monitored for 7 days for postpartum hemorrhage. Excessive bleeding from uterus may necessitate hysterectomy. The mother may be given Rhogam if she is Rh negative.
When a baby is born bottom first there is more risk that the birth will not be straight forward and that the baby could be harmed. For example, when the baby's head passes through the mother’s pelvis the umbilical cord can be compressed which prevents delivery of oxygenated blood to the baby. Due to this and other risks, babies in breech position are usually born by a planned caesarean section in developed countries.
Caesarean section reduces the risk of harm or death for the baby but does increase risk of harm to the mother compared with a vaginal delivery. It is best if the baby is in a head down position so that they can be born vaginally with less risk of harm to both mother and baby. The next section is looking at External cephalic version or ECV which is a method that can help the baby turn from a breech position to a head down position.
Vaginal birth of a breech baby has its risks but caesarean sections are not always available or possible, a mother might arrive in hospital at a late stage of her labour or may choose not to have a caesarean section. In these cases, it is important that the clinical skills needed to deliver breech babies are not lost so that mothers and babies are as safe as possible. Compared with developed countries, planned caesarean sections have not produced as good results in developing countries - it is suggested that this is due to more breech vaginal deliveries being performed by experienced, skilled practitioners in these settings.
Fetuses with polyhydramnios are at risk for a number of other problems including cord prolapse, placental abruption, premature birth and perinatal death. At delivery the baby should be checked for congenital abnormalities.
The agents of choice for blood pressure control during eclampsia are hydralazine and/or labetalol. This is because of their effectiveness, lack of negative effects on the fetus, and mechanism of action.
When the fetus is premature (< 37 weeks), the risk of being born prematurely must be weighed against the risk of prolonged membrane rupture. As long as the fetus is 34 weeks or greater, delivery is recommended as if the baby was term (see above).
If the baby has not yet been delivered, steps need to be taken to stabilize the woman and deliver her speedily. This needs to be done even if the baby is immature, as the eclamptic condition is unsafe for both baby and mother. As eclampsia is a manifestation of a multiorgan failure, other organs (liver, kidney, lungs, cardiovascular system, and coagulation system) need to be assessed in preparation for a delivery (often a caesarean section), unless the woman is already in advanced labor. Regional anesthesia for caesarean section is contraindicated when a coagulopathy has developed.
Although the risk of placental abruption cannot be eliminated, it can be reduced. Avoiding tobacco, alcohol and cocaine during pregnancy decreases the risk. Staying away from activities which have a high risk of physical trauma is also important. Women who have high blood pressure or who have had a previous placental abruption and want to conceive must be closely supervised by a doctor.
The risk of placental abruption can be reduced by maintaining a good diet including taking folic acid, regular sleep patterns and correction of pregnancy-induced hypertension.
It is crucial for women to be made aware of the signs of placental abruption, such as vaginal bleeding, and that if they experience such symptoms they must get into contact with their health care provider/the hospital "without any delay".
Surfactant appears to improve outcomes when given to infants following meconium aspiration.
It has been recommended that the throat and nose of the baby be suctioned as soon as the head is delivered. However, this is not really useful and the revised Neonatal Resuscitation Guidelines no longer recommend it. When meconium staining of the amniotic fluid is present and the baby is born depressed, it is recommended that an individual trained in neonatal intubation use a laryngoscope and endotracheal tube to suction meconium from below the vocal cords. If the condition worsens, extracorporeal membrane oxygenation (ECMO) can be useful.
Albumin-lavage has not demonstrated to benefit outcomes of MAS. Steroid use has not demonstrated to benefit the outcomes of MAS.
MAS is difficult to prevent. Amnioinfusion, a method of thinning thick meconium that has passed into the amniotic fluid through pumping of sterile fluid into the amniotic fluid, has not shown a benefit.
Polyhydramnios (polyhydramnion, hydramnios, polyhydramnios) is a medical condition describing an excess of amniotic fluid in the amniotic sac. It is seen in about 1% of pregnancies. It is typically diagnosed when the amniotic fluid index (AFI) is greater than 24 cm.
There are two clinical varieties of polyhydramnios:
- Chronic polyhydramnios where excess amniotic fluid accumulates gradually
- Acute polyhydramnios where excess amniotic fluid collects rapidly
The opposite to polyhydramnios is oligohydramnios, a deficiency in amniotic fluid.
Management has three components: interventions before delivery, timing and place of delivery, and therapy after delivery.
In some cases, fetal therapy is available for the underlying condition; this may help to limit the severity of pulmonary hypoplasia. In exceptional cases, fetal therapy may include fetal surgery.
A 1992 case report of a baby with a sacrococcygeal teratoma (SCT) reported that the SCT had obstructed the outlet of the urinary bladder causing the bladder to rupture in utero and fill the baby's abdomen with urine (a form of ascites). The outcome was good. The baby had normal kidneys and lungs, leading the authors to conclude that obstruction occurred late in the pregnancy and to suggest that the rupture may have protected the baby from the usual complications of such an obstruction. Subsequent to this report, use of a vesicoamniotic shunting procedure (VASP) has been attempted, with limited success.
Often, a baby with a high risk of pulmonary hypoplasia will have a planned delivery in a specialty hospital such as (in the United States) a tertiary referral hospital with a level 3 neonatal intensive-care unit. The baby may require immediate advanced resuscitation and therapy.
Early delivery may be required in order to rescue the fetus from an underlying condition that is causing pulmonary hypoplasia. However, pulmonary hypoplasia increases the risks associated with preterm birth, because once delivered the baby requires adequate lung capacity to sustain life. The decision whether to deliver early includes a careful assessment of the extent to which delaying delivery may increase or decrease the pulmonary hypoplasia. It is a choice between expectant management and active management. An example is congenital cystic adenomatoid malformation with hydrops; impending heart failure may require a preterm delivery. Severe oligohydramnios of early onset and long duration, as can occur with early preterm rupture of membranes, can cause increasingly severe PH; if delivery is postponed by many weeks, PH can become so severe that it results in neonatal death.
After delivery, most affected babies will require supplemental oxygen. Some severely affected babies may be saved with extracorporeal membrane oxygenation (ECMO). Not all specialty hospitals have ECMO, and ECMO is considered the therapy of last resort for pulmonary insufficiency. An alternative to ECMO is high-frequency oscillatory ventilation.
Oligohydramnios is a condition in pregnancy characterized by a deficiency of amniotic fluid. It is the opposite of polyhydramnios.
The outcome of Potter's Sequence is poor. A series of 23 patients in 2007 recorded 7 deaths, 4 in the neonatal period. All 16 survivors have chronic kidney disease, with half developing end stage renal failure (median age 0.3 years, range 2 days to 8.3 years). Survivors had growth impairment (44%) and cognitive and motor development delay (25%)
The first child to survive Bilateral Renal Agenesis (BRA), Abigail Rose Herrera Beutler, was born on July 2013 to US Congresswoman Jaime Herrera Beutler.
A few weeks before she was born, Dr. Jessica Bienstock, a professor of maternal-fetal medicine at Johns Hopkins Hospital, administered a series of saline solution injections into the mother's womb to help the baby's lungs to develop. After Abigail was born, the procedure was considered a success. The infant did not need artificial respiration and could breathe on her own. Her parents kept her on kidney dialysis at home until old enough for a kidney transplant. On February 8, 2016, at the age of two, Abigail received a kidney from her father at the Lucile Packard Children's Hospital Stanford in California.
An initial assessment to determine the status of the mother and fetus is required. Although mothers used to be treated in the hospital from the first bleeding episode until birth, it is now considered safe to treat placenta previa on an outpatient basis if the fetus is at less than 30 weeks of gestation, and neither the mother nor the fetus are in distress. Immediate delivery of the fetus may be indicated if the fetus is mature or if the fetus or mother are in distress. Blood volume replacement (to maintain blood pressure) and blood plasma replacement (to maintain fibrinogen levels) may be necessary.
Corticosteroids are indicated at 24–34 weeks gestation, given the higher risk of premature birth.
The method of delivery is determined by clinical state of the mother, fetus and ultrasound findings. In minor degrees (traditional grade I and II), vaginal delivery is possible. RCOG recommends that the placenta should be at least 2 cm away from internal os for an attempted vaginal delivery. When a vaginal delivery is attempted, consultant obstetrician and anesthetists are present in delivery suite. In cases of fetal distress and major degrees (traditional grade III and IV) a caesarean section is indicated. Caesarian section is contraindicated in cases of disseminated intravascular coagulation. An obstetrician may need to divide the anterior lying placenta. In such cases, blood loss is expected to be high and thus blood and blood products are always kept ready. In rare cases, hysterectomy may be required.
Most fetuses with triploidy do not survive to birth, and those that do usually pass within days. As there is no treatment for Triploidy, palliative care is given if a baby survives to birth. If Triploidy is diagnosed during the pregnancy, termination is often offered as an option due to the additional health risks for the mother (preeclampsia, a life-threatening condition, or choriocarcinoma, a type of cancer). Should a mother decide to carry until term or until a spontaneous miscarriage occurs, doctors will monitor her closely in case either condition develops.
Mosaic triploidy has an improved prognosis, but affected individuals have moderate to severe cognitive disabilities.
Treatment may be delivery by caesarean section and abdominal hysterectomy if placenta accreta is diagnosed before birth. Oxytocin and antibiotics are used for post-surgical management. When there is partially separated placenta with focal accreta, best option is removal of placenta. If it is important to save the woman's uterus (for future pregnancies) then resection around the placenta may be successful. Conservative treatment can also be uterus sparing but may not be as successful and has a higher risk of complications.
Techniques include:
- Leaving the placenta in the uterus and curettage of uterus. Methotrexate has been used in this case.
- Intrauterine balloon catheterisation to compress blood vessels
- Embolisation of pelvic vessels
- Internal iliac artery ligation
- Bilateral uterine artery ligation
In cases where there is invasion of placental tissue and blood vessels into the bladder, it is treated in similar manner to abdominal pregnancy and manual placental removal is avoided. However, this may eventually need hysterectomy and/or partial cystectomy.
If the patient decides to proceed with a vaginal delivery, blood products for transfusion and an anesthesiologist are kept ready at delivery.
Placental insufficiency or utero-placental insufficiency is the failure of the placenta to deliver sufficient nutrients to the fetus during pregnancy, and is often a result of insufficient blood flow to the placenta. The term is also sometimes used to designate late decelerations of fetal heart rate as measured by electronic monitoring, even if there is no other evidence of reduced blood flow to the placenta, normal uterine blood flow rate being 600mL/min.