Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Usually, a common form of treatment for the condition is a type of hand cream which moisturises the hard skin. However, currently the condition is incurable.
In general, there is no treatment available for CMTC, although associated abnormalities can be treated. In the case of limb asymmetry, when no functional problems are noted, treatment is not warranted, except for an elevation device for the shorter leg.
Laser therapy has not been successful in the treatment of CMTC, possibly due to the presence of many large and deep capillaries and dilated veins. Pulsed-dye laser and long-pulsed-dye laser have not yet been evaluated in CMTC, but neither argon laser therapy nor YAG laser therapy has been helpful.
When ulcers develop secondary to the congenital disease, antibiotic treatment such as oxacillin and gentamicin administered for 10 days has been prescribed. In one study, the wound grew Escherichia coli while blood cultures were negative.
Treatment is supportive.
- The aplastic anemia and immunodeficiency can be treated by bone marrow transplantation.
- Supportive treatment for gastrointestinal complications and infections.
- Genetic counselling.
Some patients do not require treatment to manage the symptoms of paramyotonia congenita. Avoidance of myotonia triggering events is also an effective method of mytonia prevention.
Management of AOS is largely symptomatic and aimed at treating the various congenital anomalies present in the individual. When the scalp and/or cranial bone defects are severe, early surgical intervention with grafting is indicated.
Until more molecular and clinical studies are performed there will be no way to prevent the disease. Treatments are directed towards alleviating the symptoms. To treat the disease it is crucial to diagnose it properly. Orthopedic therapy and fracture management are necessary to reduce the severity of symptoms. Bisphosphonate drugs are also an effective treatment.
Pancreatic exocrine insufficiency may be treated through pancreatic enzyme supplementation, while severe skeletal abnormalities may require surgical intervention. Neutropenia may be treated with granulocyte-colony stimulating factor (GCSF) to boost peripheral neutrophil counts. However, there is ongoing and unresolved concern that this drug could contribute to the development of leukemia. Signs of progressive marrow failure may warrant bone marrow transplantation (BMT). This has been used successfully to treat hematological aspects of disease. However, SDS patients have an elevated occurrence of BMT-related adverse events, including graft-versus-host disease (GVHD) and toxicity relating to the pre-transplant conditioning regimen. In the long run, study of the gene that is mutated in SDS should improve understanding of the molecular basis of disease. This, in turn, may lead to novel therapeutic strategies, including gene therapy and other gene- or protein-based approaches.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
Patients must have early consultation with craniofacial and orthopaedic surgeons, when craniofacial, clubfoot, or hand correction is indicated to improve function or aesthetics. Operative measures should be pursued cautiously, with avoidance of radical measures and careful consideration of the abnormal muscle physiology in Freeman–Sheldon syndrome. Unfortunately, many surgical procedures have suboptimal outcomes, secondary to the myopathy of the syndrome.
When operative measures are to be undertaken, they should be planned for as early in life as is feasible, in consideration of the tendency for fragile health. Early interventions hold the possibility to minimise developmental delays and negate the necessity of relearning basic functions.
Due to the abnormal muscle physiology in Freeman–Sheldon syndrome, therapeutic measures may have unfavourable outcomes. Difficult endotracheal intubations and vein access complicate operative decisions in many DA2A patients, and malignant hyperthermia (MH) may affect individuals with FSS, as well. Cruickshanks et al. (1999) reports uneventful use of non-MH-triggering agents. Reports have been published about spina bifida occulta in anaesthesia management and cervical kyphoscoliosis in intubations.
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
Patients and their parents must receive psychotherapy, which should include marriage counselling. Mitigation of lasting psychological problems, including depression secondary to chronic illness and posttraumatic stress disorder (PTSD), can be very successfully addressed with early interventions. This care may come from the family physician, or other attending physician, whoever is more appropriate; specialist care is generally not required. Lewis and Vitulano (2003) note several studies suggesting predisposal for psychopathology in paediatric patients with chronic illness. Esch (2002) advocates preventive psychiatry supports to facilitate balance of positive and negative stressors associated with chronic physical pathology. Patients with FSS should have pre-emptive and ongoing mixed cognitive therapy-psychodynamic psychotherapy for patients with FSS and cognitive-behavioural therapy (CBT), if begun after onset of obvious pathology.
Adler (1995) cautioned the failure of modern medicine to implement the biopsychosocial model, which incorporates all aspects of a patient’s experience in a scientific approach into the clinical picture, often results in chronically-ill patients deferring to non-traditional and alternative forms of therapy, seeking to be understood as a whole, not a part, which may be problematic among patients with FSS.
Furthermore, neuropsychiatry, physiological, and imaging studies have shown PTSD and depression to be physical syndromes, in many respects, as they are psychiatric ones in demonstrating limbic system physiological and anatomy disturbances. Attendant PTSD hyperarousal symptoms, which additionally increase physiological stress, may play a part in leading to frequent MH-like hyperpyrexia and speculate on its influence on underlying myopathology of FSS in other ways. PTSD may also bring about developmental delays or developmental stagnation, especially in paediatric patients.
With psychodynamic psychotherapy, psychopharmacotherapy may need to be considered. Electroconvulsive therapy (ECT) is advised against, in light of abnormal myophysiology, with predisposal to MH.
Surgical removal of the lesion is the first choice of treatment for many clinicians. However, the efficacy of this treatment modality cannot be assessed due to insufficient available evidence. This can be carried out by traditional surgical excision with a scalpel, with lasers, or with eletrocautery or cryotherapy. Often if biopsy demonstrates moderate or severe dysplasia then the decision to excise them is taken more readily. Sometimes white patches are too large to remove completely and instead they are monitored closely. Even if the lesion is completely removed, long term review is still usually indicated since leukoplakia can recur, especially if predisposing factors such as smoking are not stopped.
Leukoedema is a harmless condition, and no treatment is indicated. People may be alarmed by the appearance and benefit from reassurance.
Many different topical and systemic medications have been studied, including anti-inflammatories, antimycotics (target Candida species), carotenoids (precursors to vitamin A, e.g. beta carotene), retinoids (drugs similar to vitamin A), and cytotoxics, but none have evidence that they prevent malignant transformation in an area of leukoplakia.Vitamins C and E have also been studied with regards a therapy for leukoplakia. Some of this research is carried out based upon the hypothesis that antioxidant nutrients, vitamins and cell growth suppressor proteins (e.g. p53) are antagonistic to oncogenesis. High doses of retinoids may cause toxic effects. Other treatments that have been studied include photodynamic therapy.
Overall prognosis for children with amyoplasia is good. Intensive therapies throughout developing years include physical therapy, occupational therapy and multiple orthopedic procedures. Most children require therapy for years, but almost 2/3 are eventually able to walk, with or without braces, and attend school.
There is no cure. Maintaining a healthy lifestyle by exercising and avoiding smoking can help prevent fractures. Treatment may include care of broken bones, pain medication, physical therapy, braces or wheelchairs, and surgery. A type of surgery that puts metal rods through long bones may be done to strengthen them.
Bone infections are treated as and when they occur with the appropriate antibiotics and antiseptics.
Treatments for Glycerol Kinase Deficiency are targeted to treat the symptoms because there are no permanent treatments for this disease. The main way to treat these symptoms is by using corticosteroids, glucose infusion, or mineralocorticoids. Corticosteroids are steroid hormones that are naturally produced in the adrenal glands. These hormones regulate stress responses, carbohydrate metabolism, blood electrolyte levels, as well as other uses. The mineralocorticoids, such as aldosterone control many electrolyte levels and allow the kidneys to retain sodium. Glucose infusion is coupled with insulin infusion to monitor blood glucose levels and keep them stable.
Due to the multitude of varying symptoms of this disease, there is no specific treatment that will cure this disease altogether. The symptoms can be treated with many different treatments and combinations of medicines to try to find the correct combination to offset the specific symptoms. Everyone with Glycerol Kinase Deficiency has varying degrees of symptoms and thereby requires different medicines to be used in combination to treat the symptoms; however, this disease is not curable and the symptoms can only be managed, not treated fully.
Recent research has used induced pluripotent stem cells to study disease mechanisms in humans, and discovered that the reprogramming of somatic cells restores telomere elongation in dyskeratosis congenita (DKC) cells despite the genetic lesions that affect telomerase. The reprogrammed DKC cells were able to overcome a critical limitation in TERC levels and restored function (telomere maintenance and self-renewal). Therapeutically, methods aimed at increasing TERC expression could prove beneficial in DKC.
In 1998, a clinical trial demonstrated the effectiveness of intravenous pamidronate, a bisphosphonate which had previously been used in adults to treat osteoporosis. In severe OI, pamidronate reduced bone pain, prevented new vertebral fractures, reshaped previously fractured vertebral bodies, and reduced the number of long-bone fractures.
Although oral bisphosphonates are more convenient and cheaper, they are not absorbed as well, and intravenous bisphosphonates are generally more effective, although this is under study. Some studies have found oral and intravenous bisphosphonates, such as oral alendronate and intravenous pamidronate, equivalent. In a trial of children with mild OI, oral risedronate increased bone mineral densities, and reduced nonvertebral fractures. However, it did not decrease new vertebral fractures. A Cochrane review in 2016 concluded that though bisphosphonates seem to improve bone mineral density, it is uncertain whether this leads to a reduction in fractures or an improvement in the quality of life of individuals with osteogenesis imperfecta.
Bisphosphonates are less effective for OI in adults.
Surgery may be necessary to address the congenital deformities frequently occurring in conjunction with arthrogryposis. Surgery on feet, knees, hips, elbows and wrists may also be useful if more range of motion is needed after therapy has achieved maximum results. In some cases, tendon transfers can improve function. Congenital deformities of the feet, hips and spine may require surgical correction at or about one year of age.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
Pachyonychia congenita may be divided into these types:
- Pachyonychia congenita type I (also known as "Jadassohn–Lewandowsky syndrome") is an autosomal dominant keratoderma that principally involves the plantar surfaces, but also with nails changes that may be evident at birth, but more commonly develop within the first few months of life.
- Pachyonychia congenita type II (also known as "Jackson–Lawler pachyonychia congenita" and "Jackson–Sertoli syndrome") is an autosomal dominant keratoderma presenting with a limited focal plantar keratoderma that may be very minor, with nails changes that may be evident at birth, but more commonly develop within the first few months of life.
Treatment of the periodic paralyses may include carbonic anhydrase inhibitors (such as acetazolamide, methazolamide or dichlorphenamide), taking supplemental oral potassium chloride and a potassium-sparing diuretic (for hypos) or avoiding potassium (for hypers), thiazide diuretics to increase the amount of potassium excreted by the kidneys (for hypers), and significant lifestyle changes including tightly controlled levels of exercise or activity. However, treatment should be tailored to the particular type of periodic paralysis.
Treatment of periodic paralysis in Andersen-Tawil syndrome is similar to that for other types. However, pacemaker insertion or an implantable cardioverter-defibrillator may be required to control cardiac symptoms.
Genetic mutations of most forms of dwarfism caused by bone dysplasia cannot be altered yet, so therapeutic interventions are typically aimed at preventing or reducing pain or physical disability, increasing adult height, or mitigating psychosocial stresses and enhancing social adaptation.
Forms of dwarfism associated with the endocrine system may be treated using hormonal therapy. If the cause is prepubescent hyposecretion of growth hormone, supplemental growth hormone may correct the abnormality. If the receptor for growth hormone is itself affected, the condition may prove harder to treat. Hypothyroidism is another possible cause of dwarfism that can be treated through hormonal therapy. Injections of thyroid hormone can mitigate the effects of the condition, but lack of proportion may be permanent.
Pain and disability may be ameliorated by physical therapy, braces or other orthotic devices, or by surgical procedures. The only simple interventions that increase perceived adult height are dress enhancements, such as shoe lifts or hairstyle. Growth hormone is rarely used for shortness caused by bone dysplasias, since the height benefit is typically small (less than ) and the cost high. The most effective means of increasing adult height by several inches is distraction osteogenesis, though availability is limited and the cost is high in terms of money, discomfort, and disruption of life. Most people with dwarfism do not choose this option, and it remains controversial. For other types of dwarfism, surgical treatment is not possible.