Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Manipulative physiotherapy, therapeutic exercises and chiropractic manipulative therapy shows beneficial results for decreasing pain and increasing spinal range of motion. As areas of the spine and tendons can become inflamed NSAIDs such as ibuprofen and Naproxen can be helpful in both relieving pain and inflammation associated with DISH. It is hoped that by minimizing inflammation in these areas, further calcification of tendons and ligaments of the spine leading to bony outgrowths (enthesophytes) will be prevented, although causative factors are still unknown.
A 2013 Cochrane review assessed clinical studies on surgical (open reduction) and non-surgical (closed reduction) management of mandible fractures that do not involve the condyle. The review found insufficient evidence to recommend the effectiveness of any single intervention.
The best treatment for condylar fractures is controversial. There are two main options, namely closed reduction or open reduction and fixation. Closed reduction may involve intermaxillary fixation, where the jaws are splinted together in the correct position for a period of weeks. Open reduction involves surgical exposure of the fracture site, which can be carried out via incisions within the mouth or incisions outside the mouth over the area of the condyle. Open reduction is sometimes combined with use of an endoscope to aid visualization of fracture site. Although closed reduction carries a risk of the bone healing out of position, with consequent alteration of the bite or the creation of facial asymmetry, it does not risk temporary damage to the facial nerve or result in any facial scar that accompanies open reduction. A systematic review was unable to find sufficient evidence of the superiority of one method over another in the management of condylar fractures. Paediatric condylar fractures are especially problematic, owing to the remaining growth potential and possibility of ankylosis of the joint. Early mobilization is often recommended as in the Walker protocol.
Medication is the main method of managing pain in TMD, mostly because there is little if any evidence of the effectiveness of surgical or dental interventions. Many drugs have been used to treat TMD pain, such as analgesics (pain killers), benzodiazepines (e.g. clonazepam, prazepam, diazepam), anticonvulsants (e.g. gabapentin), muscle relaxants (e.g. cyclobenzaprine), and others. Analgesics that have been studied in TMD include non-steroidal anti-inflammatory drugs (e.g. piroxicam, diclofenac, naproxen) and cyclo-oxygenase-2 inhibitors (e.g. celecoxib). Topical methyl salicylate and topical capsaicin have also been used. Other drugs that have been described for use in TMD include glucosamine hydrochloride/chondroitin sulphate and propranolol. Despite many randomized control trials being conducted on these commonly used medications for TMD a systematic review carried out in 2010 concluded that there was insufficient evidence to support or not to support the use of these drugs in TMD. Low-doses of anti-muscarinic tricyclic antidepressants such as amitriptyline, or nortriptyline have also been described. In a subset of people with TMD who are not helped by either noninvasive and invasive treatments, long term use of opiate analgesics has been suggested, although these drugs carry a risk of drug dependence and other side effects. Examples include morphine, fentanyl, oxycodone, tramadol, hydrocodone, and methadone.
Botulinum toxin solution ("Botox") is sometimes used to treat TMD. Injection of botox into the lateral pterygoid muscle has been investigated in multiple randomized control trials, and there is evidence that it is of benefit in TMD. It is theorized that spasm of lateral pterygoid causes anterior disc displacement. Botulinum toxin causes temporary muscular paralysis by inhibiting acetylcholine release at the neuromuscular junction. The effects usually last for a period of months before they wear off. Complications include the creation of a "fixed" expression due to diffusion of the solution and subsequent involvement of the muscles of facial expression, which lasts until the effects of the botox wear off. Injections of local anesthetic, sometimes combined with steroids, into the muscles (e.g. the temoralis muscle or its tendon) are also sometimes used. Local anesthetics may provide temporary pain relief, and steroids inhibit pro-inflammatory cytokines. Steroids and other medications are sometimes injected directly into the joint (See Intra-articular injections).
Ankylosis or anchylosis (from Greek ἀγκύλος, bent, crooked) is a stiffness of a joint due to abnormal adhesion and rigidity of the bones of the joint, which may be the result of injury or disease. The rigidity may be complete or partial and may be due to inflammation of the tendinous or muscular structures outside the joint or of the tissues of the joint itself.
When the structures outside the joint are affected, the term "false ankylosis" has been used in contradistinction to "true ankylosis", in which the disease is within the joint. When inflammation has caused the joint-ends of the bones to be fused together, the ankylosis is termed "osseous" or complete and is an instance of synostosis. Excision of a completely ankylosed shoulder or elbow may restore free mobility and usefulness to the limb. "Ankylosis" is also used as an anatomical term, bones being said to ankylose (or anchylose) when, from being originally distinct, they coalesce, or become so joined together that no motion can take place between them.
In 2014, there was a rare case of Ankylosis, wherein a six-year old girl was able to open her mouth only a couple millimeters after one of her jaw joints got fused. Liliana Cernecca was the patient's name. She underwent a surgery at King's College Hospital in London, during which her jaw was operated on and unlocked.She was said to be one of the youngest patients to have undergone this surgery.
Fibrous ankylosis is a fibrous connective tissue process which results in decreased range of motion. Symptoms present as bony ankylosis, in which osseous tissue fuses two bones together reducing mobility, which is why fibrous ankylosis is also known as false ankylosis.
Pathology may be the result of trauma, disease, chronic inflammation, or surgery.
Some research suggests fibrous ankylosis may precede the development of bony ankylosis
Given the important role that psychosocial factors appear to play in TMD, psychosocial interventions could be viewed to be central to management of the condition. There is a suggestion that treatment of factors that modulate pain sensitivity such as mood disorders, anxiety and fatigue, may be important in the treatment of TMD, which often tends to attempt to address the pain directly.
Cognitive Behavioral Therapy (CBT) has been used in TMD and has been shown to be efficacious by meta analyses.
Hypnosis is suggested by some to be appropriate for TMD. Studies have suggested that it may even be more beneficial than occlusal splint therapy, and has comparable effects to relaxation techniques.
Relaxation techniques include progressive muscle relaxation, yoga, and meditation. It has been suggested that TMD involves increased sensitivity to external stimuli leading to an increased sympathetic ("fight or flight") response with cardiovascular and respiratory alterations. Relaxation techniques cause reduced sympathetic activity, including muscle relaxation and reducing sensitivity to external stimuli, and provoke a general sense of well being and reduced anxiety.
Evidence for ankylosis found in the fossil record is studied by paleopathologists, specialists in ancient disease and injury. Ankylosis has been reported in dinosaur fossils from several species, including "Allosaurus fragilis", "Becklespinax altispinax", "Poekilopleuron bucklandii", and "Tyrannosaurus rex" (including the Stan specimen).
Diffuse idiopathic skeletal hyperostosis (DISH) is a non-inflammatory spondyloarthropathy which predominantly affects the spine. It is characterized by ankylosis and enthesopathy (ossification of the ligaments and entheses). It most commonly affects the thoracic and thoraco-lumbar spine, but involvement is variable and can include the entire spine.
The best method for the prevention of knocked-out teeth is the use of helmets and mouth protectors. Mouth protectors can be very inexpensive, however, the compliance rate for their use is poor. Studies have shown that, even when mandated, athletes and other high risk individuals often will not use them. Also, even with their use, mouth guards can be knocked-out, leaving the user unprotected.
Since pericoronitis is a result of inflammation of the pericoronal tissues of a partially erupted tooth, management can include applying pain management gels for the mouth consisting of Lignocaine, a numbing agent. Definitive treatment can only be through preventing the source of inflammation. This is either through improved oral hygiene or by removal of the plaque stagnation areas through tooth extraction or gingival resection. Often acute symptoms of pericoronitis are treated before the underlying cause is addressed.
Synostosis (plural: synostoses) is fusion of two bones. It can be normal in puberty, fusion of the epiphysis, or abnormal. When synostosis is abnormal it is a type of dysostosis.
Examples of synostoses include:
- craniosynostosis – an abnormal fusion of two or more cranial bones;
- radioulnar synostosis – the abnormal fusion of the radius and ulna bones of the forearm;
- tarsal coalition – a failure to separately form all seven bones of the tarsus (the hind part of the foot) resulting in an amalgamation of two bones; and
- syndactyly – the abnormal fusion of neighboring digits.
Synostosis within joints can cause ankylosis.
When possible, immediate definitive treatment of acute pericoronitis is recommended because surgical treatment has been shown to resolve the spread of the infection and pain, with a quicker return of function. Also immediate treatment avoids overuse of antibiotics (preventing antibiotic resistance).
However, surgery is sometimes delayed in an area of acute infection, with the help of pain relief and antibiotics, for the following reasons:
- Reduces the risk of causing an infected surgical site with delayed healing (e.g. osteomyelitis or cellulitis).
- Avoids reduced efficiency of local anesthetics caused by the acidic environment of infected tissues.
- Resolves the limited mouth opening, making oral surgery easier.
- Patients may better cope with the dental treatment when free from pain.
- Allows for adequate planning with correctly allocated procedure time.
Firstly, the area underneath the operculum is gently irrigated to remove debris and inflammatory exudate. Often warm saline is used but other solutions may contain hydrogen peroxide, chlorhexidine or other antiseptics. Irrigation may be assisted in conjunction with Debridement (removal of plaque, calculus and food debris) with periodontal instruments. Irrigation may be enough to relieve any associated pericoronal abscess; otherwise a small incision can be made to allow drainage.
Smoothing an opposing tooth which bites into the affected operculum can eliminate this source of trauma.
Home care may involve regular use of hot salt water mouthwashes/mouth baths.
Following treatment, if there are systemic signs and symptoms, such as facial or neck swelling, cervical lymphadenitis, fever or malaise, a course of oral antibiotics is often prescribed. Common antibiotics used are from the β-lactam antibiotic group, clindamycin and metronidazole.
If there is dysphagia or dyspnoea (difficulty swallowing or breathing), then this usually means there is a severe infection and an emergency admission to hospital is appropriate so that intravenous medications and fluids can be administered and the threat to the airway monitored. Sometimes semi-emergency surgery may be arranged to drain a swelling that is threatening the airway.
Dental avulsion is a real dental emergency in which prompt management (within 20–40 minutes of injury) affects the prognosis of the tooth. The avulsed permanent tooth should be gently but well rinsed with saline, with care taken not to damage the surface of the root which may have living periodontal fiber and cells. Once the tooth and mouth are clean an attempt can be made to re-plant in its original socket within the alveolar bone and later splinted by a dentist for several weeks. Failure to re-plant the avulsed tooth within the first 40 minutes after the injury may result in a less favorable prognosis for the tooth. If the tooth cannot be immediately replaced in its socket, follow the directions for Treatment of knocked-out (avulsed) teeth and cold milk or saliva and take it to an emergency room or a dentist. If the mouth is sore or injured, cleansing of the wound may be necessary, along with stitches, local anesthesia, and an update of tetanus immunization if the mouth was contaminated with soil. Management of injured primary teeth differs from management of permanent teeth; avulsed primary tooth should not be re-planted (to avoid damage to the permanent dental crypt).
Although some dentists advise that the best treatment for an avulsed tooth is immediate replantation, for a variety of reasons this can be difficult for the non-professional person. The teeth are often covered with debris. This debris must be washed off with a physiological solution and not scrubbed. Often multiple teeth are knocked-out and the person will not know which socket an individual tooth belongs to. The injured victim may have other more serious injuries that require more immediate attention or injuries such as a severely lacerated bleeding lip or gum that prevent easy visualization of the socket. Pain may be severe and the person may resist replantation of the teeth. People may, in light of infectious diseases (e.g. HIV), fear handling the teeth or touching the blood associated with them. If immediate replantation is not possible, the teeth should be placed in an appropriate storage solution and brought to a dentist who can then replant them. The dentist will clean the socket, wash the teeth if necessary, and replant them into their sockets. He will splint them to non-knocked-out teeth for a maximum of two weeks for teeth with normal alveolar process and bone support. Properly handled, even replantation of periodontally compromised permanent teeth in older patients under good maintenance have been reported, with splinting extending for over 4 weeks due to the reduced support structure for the root due to periodontal disease. One week to ten days after the replantation, the dental pulps of the replanted teeth should be removed and a root canal treatment completed within two months.
In addition, as recommended in all dental traumas good oral hygiene with 0.12% chlorhexidine gluconate mouthwash, a soft and cold diet, and avoidance of smoking for several days may provide a favorable condition for periodontal ligaments regeneration.
Management of teeth with PFE can include extractions of affected teeth, followed by orthodontic space closure or placement of a prosthetic implant with a bone graft. This option can only be applied to a single tooth that is affected. If multiple teeth are affected then, a segmental osteotomy may be performed to bring the entire segment into occlusion. However, minimal success has been shown following this procedure. These teeth usually are "non-responsive" to the orthodontic force and studies have shown that ankylosis of these teeth can occur if force applied.
Tooth ankylosis refers to a fusion (ankylosis) of teeth to bone. The condition is diagnosed with radiographs (X-rays), which show loss of the periodontal ligament space and blending of the root with the bone. Clinically the tooth sounds solid when percussed (tapped) compared to the dull, cushioned sound from normal teeth. Ankylosis of teeth is uncommon, more so in deciduous teeth than permanent teeth.
Radioulnar synostosis is one of the more common failures of separation of parts of the upper limb. There are two general types: one is characterized by fusion of the radius and ulna at their proximal borders and the other is fused distal to the proximal radial epiphysis. Most cases are sporadic, congenital (due to a defect in longitudinal segmentation at the 7th week of development) and less often post-traumatic, bilateral in 60%, and more common in males. Familial cases in association with autosomal dominant transmission appear to be concentrated in certain geographic regions, such as Sicily.
The condition frequently is not noted until late childhood, as function may be normal, especially in unilateral cases. Increased wrist motion may compensate for the absent forearm motion. It has been suggested that individuals whose forearms are fixed in greater amounts of pronation (over 60 degrees) face more problems with function than those with around 20 degrees of fixation. Pain is generally not a problem, unless radial head dislocation should occur.
Most examples of radioulnar synostosis are isolated (non-syndromic). Syndromes that may be accompanied by radioulnar synostosis include X chromosome polyploidy (e.g., XXXY) and other chromosome disorders (e.g., 4p- syndrome, Williams syndrome), acrofacial dysostosis, Antley–Bixler syndrome, genitopatellar syndrome, Greig cephalopolysyndactyly syndrome, hereditary multiple osteochondromas (hereditary multiple exostoses), limb-body wall complex, and Nievergelt syndrome.
Craniosynostosis (from cranio, cranium; + syn, together; + ostosis relating to bone) is a condition in which one or more of the fibrous sutures in an infant skull prematurely fuses by turning into bone (ossification). Craniosynostosis has following kinds: scaphocephaly, trigonocephaly, plagiocephaly, anterior plagiocephaly, posterior plagiocephaly, brachycephaly, oxycephaly, pansynostosis.
Repair with cementum or dentin occurs after partial root resorption, fusing the tooth with the bone. It may occur following dental trauma, especially occlusal trauma, or after periapical periodontitis caused by pulp necrosis. Ankylosis itself is not a reason to remove a permanent tooth, however teeth which must be removed for other reasons are made significantly more difficult to remove if they are ankylosed.
There is no real treatment for Felty's syndrome, rather the best method in management of the disease is to control the underlying rheumatoid arthritis. Immunosuppressive therapy for RA often improves granulocytopenia and splenomegaly; this finding reflects the fact that Felty's syndrome is an immune-mediated disease. A major challenge in treating FS is recurring infection caused by neutropenia. Therefore, in order to decide upon and begin treatment, the cause and relationship of neutropenia with the overall condition must be well understood. Most of the traditional medications used to treat RA have been used in the treatment of Felty's syndrome. No well-conducted, randomized, controlled trials support the use of any single agent. Most reports on treatment regimens involve small numbers of patients.
Splenectomy may improve neutropenia in severe disease.
Use of rituximab and leflunomide have been proposed.
Use of gold therapy has also been described.
Prognosis is dependent on the severity of symptoms and the patient's overall health.
Failure of eruption of teeth happens when a single or multiple teeth fail to erupt in the mouth. This can happen due to many reasons which may include obstruction from primary teeth, bone surrounding the unerupted tooth or other mechanical factors. The two types of failure of eruption are primary failure of eruption and mechanical failure of eruption. Primary failure of eruption has been known to be associated with Parathyroid hormone 1 receptor mutation.
Felty's syndrome, also called Felty syndrome, (FS) is rare autoimmune disease characterized by the triad of rheumatoid arthritis, splenomegaly and neutropenia. The condition is more common in those aged 50–70 years, specifically more prevalent in females than males, and more so in Caucasians than those of African descent. It is a deforming disease that causes many complications for the individual.
Smallpox vaccination within three days of exposure will prevent or significantly lessen the severity of smallpox symptoms in the vast majority of people. Vaccination four to seven days after exposure can offer some protection from disease or may modify the severity of disease. Other than vaccination, treatment of smallpox is primarily supportive, such as wound care and infection control, fluid therapy, and possible ventilator assistance. Flat and hemorrhagic types of smallpox are treated with the same therapies used to treat shock, such as fluid resuscitation. People with semi-confluent and confluent types of smallpox may have therapeutic issues similar to patients with extensive skin burns.
No drug is currently approved for the treatment of smallpox. Antiviral treatments have improved since the last large smallpox epidemics, and studies suggest that the antiviral drug cidofovir might be useful as a therapeutic agent. The drug must be administered intravenously, and may cause serious kidney toxicity.
Treatment depends on the specific cause if known as well as the extent, type and configuration of the hearing loss. Most hearing loss, that resulting from age and noise, is progressive and irreversible, and there are currently no approved or recommended treatments; management is by hearing aid. A few specific kinds of hearing loss are amenable to surgical treatment. In other cases, treatment is addressed to underlying pathologies, but any hearing loss incurred may be permanent.
There are a number of devices that can improve hearing in those who are deaf or hard of hearing or allow people with these conditions to manage better in their lives.
There is no treatment, surgical or otherwise, for hearing loss due to the most common causes (age, noise, and genetic defects). For a few specific conditions, surgical intervention can provide a remedy:
- surgical correction of superior canal dehiscence
- myringotomy, surgical insertion of drainage ventilation tubes in the tympanic membrane. Such placement is usually temporary until the underlying pathology (infection or other inflammation) can be resolved.
- radiotherapy or surgical excision of vestibular schwannoma or acoustic neuroma, though, in most cases, it is unlikely that hearing will be preserved
- Stapedectomy and stapedotomy for otosclerosis - replacement or reshaping of the stapes bone of the middle ear can restore hearing in cases of conductive hearing loss
Surgical and implantable hearing aids are an alternative to conventional external hearing aids.
If the ear is dry and not infected, an air conduction aid could be tried; if the ear is draining, a direct bone condition hearing aid is often the best solution. If the conductive part of the hearing loss is more than 30–35 dB, an air conduction device could have problems overcoming this gap. A bone-anchored hearing aid could, in this situation, be a good option.
The active bone conduction hearing implant Bonebridge is also an option. This implant is invisible under the intact skin and therefore minimises the risk of skin irritations.
Cochlear implants improve outcomes in people with hearing loss in either one or both ears. They work by artificial stimulation of the cochlear nerve by providing an electric impulse substitution for the firing of hair cells. They are expensive, and require programming along with extensive training for effectiveness.
Cochlear implants as well as bone conduction implants can help with single sided deafness.
Middle ear implants or bone conduction implants can help with conductive hearing loss.
People with cochlear implants are at a higher risk for bacterial meningitis. Thus, meningitis vaccination is recommended. People who have hearing loss, especially those who develop a hearing problem in childhood or old age, may need support and technical adaptations as part of the rehabilitation process. Recent research shows variations in efficacy but some studies show that if implanted at a very young age, some profoundly impaired children can acquire effective hearing and speech, particularly if supported by appropriate rehabilitation.
The earliest procedure used to prevent smallpox was inoculation (known as variolation after the introduction of smallpox vaccine to avoid possible confusion), which likely occurred in India, Africa, and China well before the practice arrived in Europe. The idea that inoculation originated in India has been challenged, as few of the ancient Sanskrit medical texts described the process of inoculation. Accounts of inoculation against smallpox in China can be found as early as the late 10th century, and the procedure was widely practiced by the 16th century, during the Ming dynasty. If successful, inoculation produced lasting immunity to smallpox. Because the person was infected with variola virus, a severe infection could result, and the person could transmit smallpox to others. Variolation had a 0.5–2 percent mortality rate, considerably less than the 20–30 percent mortality rate of the disease. Two reports on the Chinese practice of inoculation were received by the Royal Society in London in 1700; one by Dr. Martin Lister who received a report by an employee of the East India Company stationed in China and another by Clopton Havers.
Lady Mary Wortley Montagu observed smallpox inoculation during her stay in the Ottoman Empire, writing detailed accounts of the practice in her letters, and enthusiastically promoted the procedure in England upon her return in 1718. In 1721, Cotton Mather and colleagues provoked controversy in Boston by inoculating hundreds. In 1796, Edward Jenner, a doctor in Berkeley, Gloucestershire, rural England, discovered that immunity to smallpox could be produced by inoculating a person with material from a cowpox lesion. Cowpox is a poxvirus in the same family as variola. Jenner called the material used for inoculation vaccine, from the root word "vacca", which is Latin for cow. The procedure was much safer than variolation, and did not involve a risk of smallpox transmission. Vaccination to prevent smallpox was soon practiced all over the world. During the 19th century, the cowpox virus used for smallpox vaccination was replaced by vaccinia virus. Vaccinia is in the same family as cowpox and variola, but is genetically distinct from both. The origin of vaccinia virus and how it came to be in the vaccine are not known. According to Voltaire (1742), the Turks derived their use of inoculation to neighbouring Circassia. Voltaire does not speculate on where the Circassians derived their technique from, though he reports that the Chinese have practiced it "these hundred years".
The current formulation of smallpox vaccine is a live virus preparation of infectious vaccinia virus. The vaccine is given using a bifurcated (two-pronged) needle that is dipped into the vaccine solution. The needle is used to prick the skin (usually the upper arm) a number of times in a few seconds. If successful, a red and itchy bump develops at the vaccine site in three or four days. In the first week, the bump becomes a large blister (called a "Jennerian vesicle") which fills with pus, and begins to drain. During the second week, the blister begins to dry up and a scab forms. The scab falls off in the third week, leaving a small scar.
The antibodies induced by vaccinia vaccine are cross-protective for other orthopoxviruses, such as monkeypox, cowpox, and variola (smallpox) viruses. Neutralizing antibodies are detectable 10 days after first-time vaccination, and seven days after revaccination. Historically, the vaccine has been effective in preventing smallpox infection in 95 percent of those vaccinated. Smallpox vaccination provides a high level of immunity for three to five years and decreasing immunity thereafter. If a person is vaccinated again later, immunity lasts even longer. Studies of smallpox cases in Europe in the 1950s and 1960s demonstrated that the fatality rate among persons vaccinated less than 10 years before exposure was 1.3 percent; it was 7 percent among those vaccinated 11 to 20 years prior, and 11 percent among those vaccinated 20 or more years prior to infection. By contrast, 52 percent of unvaccinated persons died.
There are side effects and risks associated with the smallpox vaccine. In the past, about 1 out of 1,000 people vaccinated for the first time experienced serious, but non-life-threatening, reactions, including toxic or allergic reaction at the site of the vaccination (erythema multiforme), spread of the vaccinia virus to other parts of the body, and to other individuals. Potentially life-threatening reactions occurred in 14 to 500 people out of every 1 million people vaccinated for the first time. Based on past experience, it is estimated that 1 or 2 people in 1 million (0.000198 percent) who receive the vaccine may die as a result, most often the result of postvaccinial encephalitis or severe necrosis in the area of vaccination (called progressive vaccinia).
Given these risks, as smallpox became effectively eradicated and the number of naturally occurring cases fell below the number of vaccine-induced illnesses and deaths, routine childhood vaccination was discontinued in the United States in 1972, and was abandoned in most European countries in the early 1970s. Routine vaccination of health care workers was discontinued in the U.S. in 1976, and among military recruits in 1990 (although military personnel deploying to the Middle East and Korea still receive the vaccination). By 1986, routine vaccination had ceased in all countries. It is now primarily recommended for laboratory workers at risk for occupational exposure.