Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of treatment for individuals with Nezelof syndrome, which was first characterized in 1964, includes the following(how effective bone marrow transplant is uncertain) :
- Antimicrobial therapy
- IV immunoglobulin
- Bone marrow transplantation
- Thymus transplantation
- Thymus factors
There is currently no specified treatment for individuals suffering from otodental syndrome. Considering that there are many possible genetic and phenotypic associations with the condition, treatment is provided based on each individual circumstance. It is recommended that those affected seek ear, nose & throat specialists, dental health specialists, and facial oral health specialists immediately; in order to determine potential treatment options.
Common treatment methods given are:
- Dental treatment/management – which can be complex, interdisciplinary and requires a regular follow up. Tooth extraction(s)and if needed, medications may be administered for pain, anxiety, and anti-inflammation. The affected individual is usually placed on a strict and preventative dental regiment in order to maintain appropriate oral hygiene and health.
- Endodontic treatment – individuals consult with an endodontist to analyze the individuals dental pulp. Typically endodontic treatment proves to be difficult due to duplicated pulp canals within the affected teeth. There may be a need for multiple extractions as well. Dental prosthesis and/or dental implants may be necessary for individuals that lack proper oral function, appearance, and comfort.
- Orthodontic treatment – given the predicament of the size and location of the affected oral area, molars and canines, orthodontic treatment is generally required in order treat any problems associated with the individuals bite pattern and tooth appearance.
- Hearing aids – in some cases affected individuals will suffer from hearing imparities and it may be necessary for hearing aid use.
The functional prognosis is mostly good with those that suffer from otodental syndrome. Appropriate dental treatment, hearing aids, and visitation to necessary specialists are recommended. Quality of life may be affected by psychological and functional aspects. It is also recommended that genetic counseling be given to families that have or may have this condition.
Early intervention is considered important. For infants, breathing and feeding difficulties, are monitored. Therapies used are "symptomatic and supportive."
Treatment is supportive.
- The aplastic anemia and immunodeficiency can be treated by bone marrow transplantation.
- Supportive treatment for gastrointestinal complications and infections.
- Genetic counselling.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
The differential diagnosis for this condition consists of acquired immune deficiency syndrome and severe combined immunodeficiency syndrome
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
When surgery is indicated, the choice of treatment is based on the classification. Table 4 shows the treatment of cleft hand divided into the classification of Manske and Halikis.
Techniques described by Ueba, Miura and Komada and the procedure of Snow-Littler are guidelines; since clinical and anatomical presentation within the types differ, the actual treatment is based on the individual abnormality.
Table 4: Treatment based on the classification of Manske and Halikis
Normal treatment for swelling and any respiratory problems is appropriate. Nutritional supplementation with Vitamin E in some studies has been shown to be effective in controlling nail changes.
The timing of surgical interventions is debatable. Parents have to decide about their child in a very vulnerable time of their parenthood. Indications for early treatment are progressive deformities, such as syndactyly between index and thumb or transverse bones between the digital rays. Other surgical interventions are less urgent and can wait for 1 or 2 years.
Autoimmune polyendocrine syndrome type 1 treatment is based on the symptoms that are presented by the affected individual, additionally there is:
- Hormone replacement
- Systemic antifungal treatment
- Immunosuppressive treatment
Webbed toes can be separated through surgery. Surgical separation of webbed toes is an example of body modification.
As with any form of surgery, there are risks of complications.
The end results depend on the extent of the webbing and underlying bone structure. There is usually some degree of scarring, and skin grafts may be required. In rare instances, nerve damage may lead to loss of feeling in the toes and a tingling sensation. There are also reports of partial web grow-back. The skin grafts needed to fill in the space between the toes can lead to additional scars in the places where the skin is removed.
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
There is no treatment for the disorder. A number of studies are looking at gene therapy, exon skipping and CRISPR interference to offer hope for the future. Accurate determination through confirmed diagnosis of the genetic mutation that has occurred also offers potential approaches beyond gene replacement for a specific group, namely in the case of diagnosis of a so-called nonsense mutation, a mutation where a stop codon is produced by the changing of a single base in the DNA sequence. This results in premature termination of protein biosynthesis, resulting in a shortened and either functionless or function-impaired protein. In what is sometimes called "read-through therapy", translational skipping of the stop codon, resulting in a functional protein, can be induced by the introduction of specific substances. However, this approach is only conceivable in the case of narrowly circumscribed mutations, which cause differing diseases.
Prosthetic replacement of missing teeth is possible using dental implant technology or dentures. This treatment can be successful in giving patients with anodontia a more aesthetically pleasing appearance. The use of an implant prosthesis in the lower jaw could be recommended for younger patients as it is shown to significantly improve the craniofacial growth, social development and self-image. The study associated with this evidence worked with individuals who had ectodermal dysplasia of varying age groups of up to 11, 11 to 18 and more than 18 years. It was noted that the risk of implant failure was significantly higher in patients younger than 18 years, but there is significant reason to use this methodology of treatment in those older. Overall the use of an implant-prosthesis has a considerable functional, aesthetic and psychological advantage when compared to a conventional denture, in the patients.
Currently there are no open research studies for otodental syndrome. Due to the rarity of this disease, current research is very limited.
The most recent research has involved case studies of the affected individuals and/or families, all of which show the specific phenotypic symptoms of otodental syndrome. Investigations on the effects of FGF3 and FADD have also been performed. These studies have shown successes in supporting previous studies that mutations to FGF3 and neighboring genes may cause the associated phenotypic abnormalities. According to recent studies involving zebrafish embryos, there is also support in that the FADD gene contributed to ocular coloboma symptoms as well.
Future research studies are required in order to better grasp the specific relationship between the gene involved and its effect on various tissues and organs such as teeth, eyes, and ear. Little is known and there is still much to be determined.
Unerupted microdonts may require surgical removal to prevent the formation of cysts. Erupted microdonts, peg laterals especially, may cause cosmetic concern. Such teeth may be restored to resemble normal sized teeth, typically with composite build ups or crowns. Orthodontics may be required in severe cases to close gaps between the teeth.
Available treatment falls into two modalities: treating infections and boosting the immune system.
Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised. In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administrated, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.
There is no known cure for achondroplasia even though the cause of the mutation in the growth factor receptor has been found. Although used by those without achondroplasia to aid in growth, human growth hormone does not help people with achondroplasia. However, if desired, the controversial surgery of limb-lengthening will lengthen the legs and arms of someone with achondroplasia.
Usually, the best results appear within the first and second year of therapy. After the second year of growth hormone therapy, beneficial bone growth decreases. Therefore, GH therapy is not a satisfactory long term treatment.
People with yellow nail syndrome have been found to have a moderately reduced lifespan compared to people without the condition.
A disease that threatens the eyesight and additionally produces a hair anomaly that is apparent to strangers causes harm beyond the physical. It is therefore not surprising that learning the diagnosis is a shock to the patient. This is as true of the affected children as of their parents and relatives. They are confronted with a statement that there are at present no treatment options. They probably have never felt so alone and abandoned in their lives. The question comes to mind, "Why me/my child?" However, there is always hope and especially for affected children, the first priority should be a happy childhood. Too many examinations and doctor appointments take up time and cannot practically solve the problem of a genetic mutation within a few months. It is therefore advisable for parents to treat their child with empathy, but to raise him or her to be independent and self-confident by the teenage years. Openness about the disease and talking with those affected about their experiences, even though its rarity makes it unlikely that others will be personally affected by it, will together assist in managing life.
Diagnosis
Originally NEMO deficiency syndrome was thought to be a combination of Ectodermal Dysplasia (ED) and a lack of immune function, but is now understood to be more complex disease. NEMO Deficiency Syndrome may manifest itself in the form of several different diseases dependent upon mutations of the IKBKG gene such as Incontinentia pigmenti or Ectodermal dysplasia.
The clinical presentation of NEMO deficiency is determined by three main symptoms:
1. Susceptibility to pyogenic infections in the form of severe local inflammation
2. Susceptibility to mycobacterial infection
3. Symptoms of Ectodermal Dysplasia
To determine whether or not patient has NEMO deficiency, an immunologic screen to test immune system response to antigen may be used although a genetic test is the only way to be certain as many individuals respond differently to the immunological tests.
Commonly Associated Diseases
NEMO deficiency syndrome may present itself as Incontinentia pigmenti or Ectodermal dysplasia depending on the type of genetic mutation present, such as if the mutation results in the complete loss of gene function or a point mutation.
Amorphic genetic mutations in the IKBKG gene, which result in the loss of gene function, typically present themselves as Incontinetia Pigmenti (IP). Because loss of NEMO function is lethal, only heterozygous females or males with XXY karyotype or mosaicism for this gene survive and exhibit symptoms of Incontinetia Pigmenti, such as skin lesions and abnormalities in hair, teeth, and nails. There are a variety of mutations that may cause the symptoms of IP, however, they all involve the deletion of exons on the IKBKG gene.
Hypomorphic genetic mutations in the IKBKG gene, resulting in a partial loss of gene function, cause the onset of Anhidrotic ectodermal dysplasia with Immunodeficiency (EDA-IP). The lack of NEMO results in a decreased levels of NF-κB transcription factor translocation and gene transcription, which in turn leads to a low level of immunoglobulin production. Because NF-κB translocation is unable to occur without proper NEMO function, the cell signaling response to immune mediators such as IL-1β, IL-18, and LPS are ineffective thus leading to a compromised immune response to various forms of bacterial infections.
Treatment
The aim of treatment is to prevent infections so children will usually be started on immunoglobulin treatment. Immunoglobulin is also known as IgG or antibody. It is a blood product and is given as replacement for people who are unable to make their own antibodies. It is the mainstay of treatment for patients affected by primary antibody deficiency. In addition to immunoglobulin treatment, children may need to take antibiotics or antifungal medicines to prevent infections or treat them promptly when they occur. Regular monitoring and check-ups will help to catch infections early. If an autoimmune response occurs, this can be treated with steroid and/or biologic medicines to damp down the immune system so relieving the symptoms.
In some severely affected patients, NEMO deficiency syndrome is treated using a bone marrow or blood stem cell transplant. The aim is to replace the faulty immune system with an immune system from a healthy donor.
There is no cure, although curative therapy with bone marrow transplantion is being investigated in clinical trials. It is believed the healthy marrow will provide the sufferer with cells from which osteoclasts will develop. If complications occur in children, patients can be treated with vitamin D. Gamma interferon has also been shown to be effective, and it can be associated to vitamin D. Erythropoetin has been used to treat any associated anemia. Corticosteroids may alleviate both the anemia and stimulate bone resorption. Fractures and osteomyelitis can be treated as usual. Treatment for osteopetrosis depends on the specific symptoms present and the severity in each person. Therefore, treatment options must be evaluated on an individual basis. Nutritional support is important to improve growth and it also enhances responsiveness to other treatment options. A calcium-deficient diet has been beneficial for some affected people.
Treatment is necessary for the infantile form:
- Vitamin D (calcitriol) appears to stimulate dormant osteoclasts, which stimulates bone resorption
- Gamma interferon can have long-term benefits. It improves white blood cell function (leading to fewer infections), decreases bone volume, and increases bone marrow volume.
- Erythropoietin can be used for anemia, and corticosteroids can be used for anemia and to stimulate bone resorption.
Bone marrow transplantation (BMT) improves some cases of severe, infantile osteopetrosis associated with bone marrow failure, and offers the best chance of longer-term survival for individuals with this type.
In pediatric (childhood) osteopetrosis, surgery is sometimes needed because of fractures. Adult osteopetrosis typically does not require treatment, but complications of the condition may require intervention. Surgery may be needed for aesthetic or functional reasons (such as multiple fractures, deformity, and loss of function), or for severe degenerative joint disease.
The long-term-outlook for people with osteopetrosis depends on the subtype and the severity of the condition in each person.The severe infantile forms of osteopetrosis are associated with shortened life expectancy, with most untreated children not surviving past their first decade. seems to have cured some infants with early-onset disease. However, the long-term prognosis after transplantation is unknown. For those with onset in childhood or adolescence, the effect of the condition depends on the specific symptoms (including how fragile the bones are and how much pain is present). Life expectancy in the adult-onset forms is normal.
In cases of a minor deviation of the wrist, treatment by splinting and stretching alone may be a sufficient approach in treating the radial deviation in RD. Besides that, the parent can support this treatment by performing passive exercises of the hand. This will help to stretch the wrist and also possibly correct any extension contracture of the elbow. Furthermore, splinting is used as a postoperative measure trying to avoid a relapse of the radial deviation.
The treatment of choice is a large resection or amputation of the affected limb. Radiation therapy can precede or follow surgical treatment. Tumors that have advanced locally or have metastasized can be treated with mono or polychemotherapy, systemically or locally. However, chemotherapy and radiation therapy have not been shown to improve survivorship significantly.