Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most successful treatment for angiosarcoma is amputation of the affected limb if possible. Chemotherapy may be administered if there is metastatic disease. If there is no evidence of metastasis beyond the lymphedematous limb, adjuvant chemotherapy may be given anyway due to the possibility of micrometastatic disease. Evidence supporting the effectiveness of chemotherapy is, in many cases, unclear due to a wide variety of prognostic factors and small sample size. However, there is some evidence to suggest that drugs such as paclitaxel, doxorubicin, ifosfamide, and gemcitabine exhibit antitumor activity.
In general, treatment for soft-tissue sarcomas depends on the stage of the cancer. The stage of the sarcoma is based on the size and grade of the tumor, and whether the cancer has spread to the lymph nodes or other parts of the body (metastasized). Treatment options for soft-tissue sarcomas include surgery, radiation therapy, and chemotherapy.
- Surgery is the most common treatment for soft-tissue sarcomas. If possible, the doctor will remove the cancer and a safe margin of the healthy tissue around it. It is important to obtain a margin free of tumor to decrease the likelihood of local recurrence and give the best chance for eradication of the tumor. Depending on the size and location of the sarcoma, it may, rarely, be necessary to remove all or part of an arm or leg.
- Radiation therapy may be used either before surgery to shrink tumors or after surgery to kill any cancer cells that may have been left behind. In some cases, it can be used to treat tumours that cannot be surgically removed. In multiple studies, radiation therapy has been found to improve the rate of local control, but has not had any influence on overall survival.
- Chemotherapy may be used with radiation therapy either before or after surgery to try to shrink the tumor or kill any remaining cancer cells. The use of chemotherapy to prevent the spread of soft-tissue sarcomas has not been proven to be effective. If the cancer has spread to other areas of the body, chemotherapy may be used to shrink tumors and reduce the pain and discomfort they cause, but is unlikely to eradicate the disease.
Treatment is varied and depends on the site and extent of tumor involvement, site(s) of metastasis, and specific individual factors. Surgical resection, radiotherapy, and chemotherapy have all been used to treat these masses, although studies on survival have yet to be conducted to delineate various treatment regimens.
Treatment includes chemotherapy and, where practical, removal of the tumor with the affected organ, such as with a splenectomy. Splenectomy alone gives an average survival time of 1–3 months. The addition of chemotherapy, primarily comprising the drug doxorubicin, alone or in combination with other drugs, can increase the average survival time to 2-4 months, or more.
A more favorable outcome has been demonstrated in recent research conducted at University of Pennsylvania Veterinary School, in dogs treated with a compound derived from the Coriolus versicolor (commonly known as "Turkey Tail") mushroom:
“We were shocked,” Cimino Brown said. “Prior to this, the longest reported median survival time of dogs with hemangiosarcoma of the spleen that underwent no further treatment was 86 days. We had dogs that lived beyond a year with nothing other than this mushroom as treatment.”There were not statistically significant differences in survival between the three dosage groups, though the longest survival time was highest in the 100 mg group, at 199 days, eclipsing the previously reported survival time.
The results were so surprising, in fact, that the researchers asked Penn Vet pathologists to recheck the dogs’ tissue biopsies to make sure that the dogs really had the disease.
“They reread the samples and said, yes, it’s really hemangiosarcoma,” Cimino Brown said.
Chemotherapy is available for treating hemangiosarcoma, but many owners opt not to pursue that treatment once their dog is diagnosed.
“It doesn’t hugely increase survival, it’s expensive and it means a lot of back and forth to the vet for the dog,” Cimino Brown said. “So you have to figure in quality of life.”
This treatment does not always work. So, one should always be prepared for their pet to have the same survival time as a dog who is untreated.
Visceral hemangiosarcoma is usually fatal even with treatment, and usually within weeks or, at best, months. In the skin, it can be cured in most cases with complete surgical removal as long as there is not visceral involvement.
Removal of the mast cell tumor through surgery is the treatment of choice. Antihistamines, such as diphenhydramine, are given prior to surgery to protect against the effects of histamine released from the tumor. Wide margins (two to three centimeters) are required because of the tendency for the tumor cells to be spread out around the tumor. If complete removal is not possible due to the size or location, additional treatment, such as radiation therapy or chemotherapy, may be necessary. Prednisone is often used to shrink the remaining tumor portion. H2 blockers, such as cimetidine, protect against stomach damage from histamine. Vinblastine and CCNU are common chemotherapy agents used to treat mast cell tumors.
Toceranib and masitinib, examples of receptor tyrosine kinase inhibitors, are used in the treatment of canine mast cell tumors. Both were recently approved by the U.S. Food and Drug Administration (FDA) as dog-specific anticancer drugs.
Grade I or II mast cell tumors that can be completely removed have a good prognosis. One study showed about 23 percent of incompletely removed grade II tumors recurred locally. Any mast cell tumor found in the gastrointestinal tract, paw, or on the muzzle has a guarded prognosis. Previous beliefs that tumors in the groin or perineum carried a worse prognosis have been discounted. Tumors that have spread to the lymph nodes or other parts of the body have a poor prognosis. Any dog showing symptoms of mastocytosis or with a grade III tumor has a poor prognosis. Dogs of the Boxer breed have a better than average prognosis because of the relatively benign behavior of their mast cell tumors. Multiple tumors that are treated similarly to solitary tumors do not seem to have a worse prognosis.
Mast cell tumors do not necessarily follow the histological prognosis. Further prognostic information can be provided by AgNOR stain of histological or cytological specimen. Even then, there is a risk of unpredictable behavior.
Treatment with chemotherapy has been used with some success, particularly using lomustine, prednisone, doxorubicin, and cyclophosphamide. Because of the rapid progression of this aggressive disease, the prognosis is very poor.
The one known curative treatment is allogeneic stem cell transplantation, but this approach involves significant risks.
Other treatment options are largely supportive, and do not alter the course of the disorder (with the possible exception of ruxolitinib, as discussed below). These options may include regular folic acid, allopurinol or blood transfusions. Dexamethasone, alpha-interferon and hydroxyurea (also known as hydroxycarbamide) may play a role.
Lenalidomide and thalidomide may be used in its treatment, though peripheral neuropathy is a common troublesome side-effect.
Frequent blood transfusions may also be required. If the patient is diabetic and is taking a sulfonylurea, this should be stopped periodically to rule out drug-induced thrombocytopenia.
Splenectomy is sometimes considered as a treatment option for patients with myelofibrosis in whom massive splenomegaly is contributing to anaemia because of hypersplenism, particularly if they have a heavy requirement for blood transfusions. However, splenectomy in the presence of massive splenomegaly is a high-risk procedure, with a mortality risk as high as 3% in some studies.
In November 2011, the FDA approved ruxolitinib (Jakafi) as a treatment for intermediate or high-risk myelofibrosis. Ruxolitinib serves as an inhibitor of JAK 1 and 2.
The "New England Journal of Medicine" (NEJM) published results from two Phase III studies of ruxolitinib. These data showed that the treatment significantly reduced spleen volume, improved symptoms of myelofibrosis, and was associated with improved overall survival compared to placebo.
The treatment of choice is a large resection or amputation of the affected limb. Radiation therapy can precede or follow surgical treatment. Tumors that have advanced locally or have metastasized can be treated with mono or polychemotherapy, systemically or locally. However, chemotherapy and radiation therapy have not been shown to improve survivorship significantly.
The management of PASH is controversial. Excision may be indicated in enlarging masses or lesions with atypical features.
Often, no treatment is required or necessary for reactive thrombocytosis. In cases of reactive thrombocytosis of more than 1,000x10/L, it may be considered to administer daily low dose aspirin (such as 65 mg) to minimize the risk of stroke or thrombosis.
However, in primary thrombocytosis, if platelet counts are over 750,000 or 1,000,000, and especially if there are other risk factors for thrombosis, treatment may be needed. Selective use of aspirin at low doses is thought to be protective. Extremely high platelet counts in primary thrombocytosis can be treated with hydroxyurea (a cytoreducing agent) or anagrelide (Agrylin).
In Jak-2 positive disorders, ruxolitinib (Jakafi) can be effective.
The theory behind splenectomy in JMML is that the spleen may trap leukemic cells, leading to the spleen's enlargement, by harboring dormant JMML cells that are not eradicated by radiation therapy or chemotherapy for the active leukemia cells, thus leading to later relapse if the spleen is not removed. However, the impact of splenectomy on post-transplant relapse, though, is unknown. The COG JMML study includes splenectomy as a standard component of treatment for all clinically stable patients. The EWOG-MDS JMML study allows each child’s physician to determine whether or not a splenectomy should be done, and large spleens are commonly removed prior to bone marrow transplant. When a splenectomy is scheduled, JMML patients are advised to receive vaccines against "Streptococcus pneumoniae" and "Haemophilus influenza" at least 2 weeks prior to the procedure. Following splenectomy, penicillin may be administered daily in order to protect the patient against bacterial infections that the spleen would otherwise have protected against; this daily preventative regimen will often continue indefinitely.
The role of chemotherapy or other pharmacologic treatments against JMML before bone marrow transplant has not been studied completely and its importance is still unknown. Chemotherapy by itself has proven unable to bring about long-term survival in JMML.
- Low-dose conventional chemotherapy: Studies have shown no influence from low-dose conventional chemotherapy on JMML patients’ length of survival. Some combinations of 6-mercaptopurine with other chemotherapy drugs have produced results such as decrease in organ size and increase or normalization of platelet and leukocyte count.
- Intensive chemotherapy: Complete remission with ongoing durability from JMML has not been possible through use of intensive chemotherapy, but it is still used at times because it has improved the condition of a small but significant number of JMML patients who do not display an aggressive disease. The COG JMML study administers 2 cycles of fludarabine and cytarabine for 5 consecutive days along with 13-cis retinoic acid during and afterwards. The EWOG-MDS JMML study, however, does not recommend intensive chemotherapy before bone marrow transplant.
- 13-cis retinoic acid (Isotretinoin): In the lab, 13-cis-retinoic acid has inhibited the growth of JMML cells. The COG JMML study therefore includes 13-cis-retinoic acid in its treatment protocol, though its therapeutic value for JMML remains controversial.
If the splenomegaly underlies hypersplenism, a splenectomy is indicated and will correct the hypersplenism. However, the underlying cause of the hypersplenism will most likely remain; consequently, a thorough diagnostic workup is still indicated, as, leukemia, lymphoma and other serious disorders can cause hypersplenism and splenomegaly. After splenectomy, however, patients have an increased risk for infectious diseases.
Patients undergoing splenectomy should be vaccinated against "Haemophilus influenzae", "Streptococcus pneumoniae", and "Meningococcus". They should also receive annual influenza vaccinations. Long-term prophylactic antibiotics may be given in certain cases.
In cases of infectious mononucleosis splenomegaly is a common symptom and health care providers may consider using abdominal ultrasonography to get insight into a person's condition. However, because spleen size varies greatly, ultrasonography is not a valid technique for assessing spleen enlargement and should not be used in typical circumstances or to make routine decisions about fitness for playing sports.
Due to the high risk of recurrence and ensuing problems, close monitoring of dogs undergoing chemotherapy is important. The same is true for dogs that have entered remission and ceased treatment. Monitoring for disease and remission/recurrence is usually performed by palpation of peripheral lymph nodes. This procedure detects gross changes in peripheral lymph nodes. Some of the blood tests used in diagnosing lymphoma also offer greater objectivity and provide an earlier warning of an animal coming out of remission.
Complete cure is rare with lymphoma and treatment tends to be palliative, but long remission times are possible with chemotherapy. With effective protocols, average first remission times are 6 to 8 months. Second remissions are shorter and harder to accomplish. Average survival is 9 to 12 months. The most common treatment is a combination of cyclophosphamide, vincristine, prednisone, L-asparaginase, and doxorubicin. Other chemotherapy drugs such as chlorambucil, lomustine (CCNU), cytosine arabinoside, and mitoxantrone are sometimes used in the treatment of lymphoma by themselves or in substitution for other drugs. In most cases, appropriate treatment protocols cause few side effects, but white blood cell counts must be monitored.
Allogeneic and autologous stem cell transplantations (as is commonly done in humans) have recently been shown to be a possible treatment option for dogs. Most of the basic research on transplantation biology was generated in dogs. Current cure rates using stem cell therapy in dogs approximates that achieved in humans, 40-50%.
When cost is a factor, prednisone used alone can improve the symptoms dramatically, but it does not significantly affect the survival rate. The average survival times of dogs treated with prednisone and untreated dogs are both one to two months. Using prednisone alone can cause the cancer to become resistant to other chemotherapy agents, so it should only be used if more aggressive treatment is not an option.
Isotretinoin can be used to treat cutaneous lymphoma.
Hemangiosarcoma can cause a wide variety of hematologic and hemostatic abnormalities, including anemia, thrombocytopenia (low platelet count), disseminated intravascular coagulation (DIC); presence of nRBC, schistocytes, and acanthocytes in the blood smear; and leukocytosis with neutrophilia, left shift, and monocytosis.
A definitive diagnosis requires biopsy and histopathology. Cytologic aspirates are usually not recommended, as the accuracy rate for a positive diagnosis of malignant splenic disease is approximately 50%. This is because of frequent blood contamination and poor exfoliation. Surgical biopsy is the typical approach in veterinary medicine.
Two types of mast cell tumors have been identified in cats, a mast cell type similar to dogs and a histiocytic type that appears as subcutaneous nodules and may resolve spontaneously. Young Siamese cats are at an increased risk for the histiocytic type, although the mast cell type is the most common in all cats and is considered to be benign when confined to the skin.
Mast cell tumors of the skin are usually located on the head or trunk. Gastrointestinal and splenic involvement is more common in cats than in dogs; 50 percent of cases in dogs primarily involved the spleen or intestines. Gastrointestinal mast cell tumors are most commonly found in the muscularis layer of the small intestine, but can also be found in the large intestine. It is the third most common intestinal tumor in cats, after lymphoma and adenocarcinoma.
Diagnosis and treatment are similar to that of the dog. Cases involving difficult to remove or multiple tumors have responded well to strontium-90 radiotherapy as an alternative to surgery. The prognosis for solitary skin tumors is good, but guarded for tumors in other organs. Histological grading of tumors has little bearing on prognosis.
There is increasing use of immunosuppressants such as mycophenolate mofetil and azathioprine because of their effectiveness. In chronic refractory cases, where immune pathogenesis has been confirmed, the off-label use of the "vinca" alkaloid and chemotherapy agent vincristine may be attempted. However, vincristine has significant side effects and its use in treating ITP must be approached with caution, especially in children.
Initial treatment usually consists of the administration of corticosteroids, a group of medications that suppress the immune system. The dose and mode of administration is determined by platelet count and whether there is active bleeding: in urgent situations, infusions of dexamethasone or methylprednisolone may be used, while oral prednisone or prednisolone may suffice in less severe cases. Once the platelet count has improved, the dose of steroid is gradually reduced while the possibility of relapse is monitored. 60–90 percent will experience a relapse during dose reduction or cessation. Long-term steroids are avoided if possible because of potential side-effects that include osteoporosis, diabetes and cataracts.
Angiosarcoma is a cancer of the cells that line the walls of blood vessels or lymphatic vessels. The lining of the vessel walls is called the endothelium. Cancers from the walls of blood vessels are called hemangiosarcomas, and cancers from the walls of lymphatic vessels are called lymphangiosarcomas. However, they should not be confused with cherry hemangiomas.
Most tumors of visceral blood and lymphatic vessel walls are cancerous (malignant). Because these cancers are carried by the blood flow or lymphatic flow, they can more easily metastasize to distant sites, particularly the liver and lungs.
Angiosarcomas will show signs of hemorrhage and necrosis. Pathologically, tumor cells will show increased nuclear to cytoplasm ratio, nuclear hyperchromasia, nuclear pleomorphism and high mitotic activity.
In dogs, hemangiosarcoma is relatively common, especially in larger breeds such as golden retrievers and Labrador retrievers. In humans, hemangiosarcomas and lymphangiosarcomas of the skin are uncommon. Angiosarcoma of the liver, a rare fatal tumor, has been seen in workers intensively exposed to the gas vinyl chloride monomer (VCM) for prolonged periods while working in polyvinyl chloride (PVC) polymerization plants. It has also been associated with individuals exposed to arsenic-containing insecticides and Thorotrast.
Intravascular papillary endothelial hyperplasia (also known as "Masson's hemangio-endotheliome vegetant intravasculaire," "Masson's lesion," "Masson's pseudoangiosarcoma," "Masson's tumor," and "Papillary endothelial hyperplasia") is a rare, benign tumor. It may mimic an angiosarcoma, with lesions that are red or purplish 5-mm to 5-cm papules and deep nodules on the head, neck, or upper extremities.
Littoral cell angioma, abbreviated LCA, and formally known as littoral cell angioma of the spleen, is a benign tumour of the spleen that arises from the cells that line the red pulp.
Hemangioendothelioma is used to describe a group of vascular neoplasms that may be considered benign as well as malignant, depending on the specific group member's activity.
Most patients with T-cell prolymphocytic leukemia require immediate treatment.
T-cell prolymphocytic leukemia is difficult to treat, and it does not respond to most available chemotherapeutic drugs. Many different treatments have been attempted, with limited success in certain patients: purine analogues (pentostatin, fludarabine, cladribine), chlorambucil, and various forms of combination chemotherapy regimens, including cyclophosphamide, doxorubicin, vincristine, prednisone (CHOP), etoposide, bleomycin (VAPEC-B).
Alemtuzumab (Campath), an anti-CD52 monoclonal antibody that attacks white blood cells, has been used in treatment with greater success than previous options. In one study of previously treated people with T-PLL, people who had a complete response to alemtuzumab survived a median of 16 months after treatment.
Some patients who successfully respond to treatment also undergo stem cell transplantation to consolidate the response.
Early detection is key. Untreated patients usually live 5 to 8 months after diagnosis.
Median survival is about 9 months.
Autologous stem cell transplantation has been used in treatment.