Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is currently no cure available. The epilepsy can be controlled by the use of one or more types of anticonvulsant medications. However, there are difficulties in ascertaining the levels and types of anticonvulsant medications needed to establish control, because AS is usually associated with having multiple varieties of seizures, rather than just the one as in normal cases of epilepsy. Many families use melatonin to promote sleep in a condition which often affects sleep patterns. Many individuals with Angelman syndrome sleep for a maximum of five hours at any one time. Mild laxatives are also used frequently to encourage regular bowel movements, and early intervention with physiotherapy is important to encourage joint mobility and prevent stiffening of the joints. Speech and Language Therapy is commonly employed to assist individuals with Angelman syndrome and their communication issues.
Those with the syndrome are generally happy and contented people who like human contact and play. People with AS exhibit a profound desire for personal interaction with others. Communication can be difficult at first, but as a child with AS develops, there is a definite character and ability to make themselves understood. People with AS tend to develop strong non-verbal skills to compensate for their limited use of speech. It is widely accepted that their understanding of communication directed to them is much larger than their ability to return conversation. Most affected people will not develop more than 5–10 words, if any at all.
Seizures are a consequence, but so is excessive laughter, which is a major hindrance to early diagnosis.
Current trends in treating the disorder include medications for symptom-based treatments that aim to minimize the secondary characteristics associated with the disorder. If an individual is diagnosed with FXS, genetic counseling for testing family members at risk for carrying the full mutation or premutation is a critical first-step. Due to a higher prevalence of FXS in boys, the most commonly used medications are stimulants that target hyperactivity, impulsivity, and attentional problems. For co-morbid disorders with FXS, antidepressants such as selective serotonin reuptake inhibitors (SSRIs) are utilized to treat the underlying anxiety, obsessive-compulsive behaviors, and mood disorders. Following antidepressants, antipsychotics such as Risperdal and Seroquel are used to treat high rates of self-injurious, aggressive and aberrant behaviors in this population (Bailey Jr et al., 2012). Anticonvulsants are another set of pharmacological treatments used to control seizures as well as mood swings in 13%–18% of individuals suffering from FXS. Drugs targeting the mGluR5 (metabotropic glutamate receptors) that are linked with synaptic plasticity are especially beneficial for targeted symptoms of FXS. Lithium is also currently being used in clinical trials with humans, showing significant improvements in behavioral functioning, adaptive behavior, and verbal memory. Alongside pharmacological treatments, environmental influences such as home environment and parental abilities as well as behavioral interventions such as speech therapy, sensory integration, etc. all factor in together to promote adaptive functioning for individuals with FXS.
Current pharmacological treatment centers on managing problem behaviors and psychiatric symptoms associated with FXS. However, as there has been very little research done in this specific population, the evidence to support the use of these medications in individuals with FXS is poor.
ADHD, which affects the majority of boys and 30% of girls with FXS, is frequently treated using stimulants. However, the use of stimulants in the fragile X population is associated with a greater frequency of adverse events including increased anxiety, irritability and mood lability. Anxiety, as well as mood and obsessive-compulsive symptoms, may be treated using SSRIs, although these can also aggravate hyperactivity and cause disinhibited behavior. Atypical antipsychotics can be used to stabilise mood and control aggression, especially in those with comorbid ASD. However, monitoring is required for metabolic side effects including weight gain and diabetes, as well as movement disorders related to extrapyramidal side effects such as tardive dyskinesia. Individuals with coexisting seizure disorder may require treatment with anticonvulsants.
There are no current treatments or cures for the underlying defects of FXS. Management of FXS may include speech therapy, behavioral therapy, sensory integration occupational therapy, special education, or individualised educational plans, and, when necessary, treatment of physical abnormalities. Persons with fragile X syndrome in their family histories are advised to seek genetic counseling to assess the likelihood of having children who are affected, and how severe any impairments may be in affected descendants.
While there is no specific treatment for the underlying genetic cause of LFS; corrective procedures, preventive intervention measures and therapies may be considered in the treatment and management of the many craniofacial, orthopedic and psychiatric problems associated with the disorder. More pressing issues such as cardiac involvement or epileptic seizures should be routinely examined and monitored. Close attention and specialized follow-up care, including neuropshycological evaluation methods and therapies, and special education, should be given to diagnose and prevent psychiatric disorders and related behavioral problems such as psychosis and outbursts of aggression.
Prader–Willi syndrome has no cure; however, several treatments are in place to lessen the condition's symptoms. During infancy, subjects should undergo therapies to improve muscle strength. Speech and occupational therapy are also indicated. During the school years, children benefit from a highly structured learning environment as well as extra help. The largest problem associated with the syndrome is severe obesity. Access to food must be strictly supervised and limited, usually by installing locks on all food-storage places including refrigerators.
Because hypotonia can be a symptom of PWS, it is vital to provide proper nutrition during infancy. It is also very important to stress physical activity in individuals with PWS for all ages in order to optimize strength and promote a healthy lifestyle.
Prescription of daily recombinant growth hormone injections are indicated for children with PWS. GH supports linear growth and increased muscle mass, and may lessen food preoccupation and weight gain.
Because of severe obesity, obstructive sleep apnea is a common sequela, and a positive airway pressure machine is often needed. There may come a time when a person who has been diagnosed with PWS may have to undergo surgical procedures. One surgery that has proven to be unsuccessful for treating the obesity is gastric bypass. Patients with Prader–Willi syndrome have a very high tolerance to pain; therefore they may be experiencing significant abdominal symptoms such as acute gastritis, appendicitis, or cholecystitis and not be aware of it until later.
Behavior and psychiatric problems should be detected early for the best results. These issues are best when treated with parental education and training. Sometimes medication is introduced as well. Serotonin agonists have been most effective in lessening temper tantrums and improving compulsivity.
Surgery is typically used to correct structural heart defects and syndactyly. Propanolol or beta-adrenergic blockers are often prescribed as well as insertion of a pacemaker to maintain proper heart rhythm. With the characterization of Timothy syndrome mutations indicating that they cause defects in calcium currents, it has been suggested that calcium channel blockers may be effective as a therapeutic agent.
At the present time, there is no specific treatment that can undo any chromosomal abnormality, nor the genetic pattern seen in people with idic(15). The extra chromosomal material in those affected was present at or shortly after conception, and its effects on brain development began taking place long before the child was born. Therapies are available to help address many of the symptoms associated with idic(15). Physical, occupational, and speech therapies along with special education techniques can stimulate children with idic(15) to develop to their full potential.
In terms of medical management of the symptoms associated with Chromosome 15q11.2-q13.1 Duplication Syndrome, families should be aware that individuals with chromosome 15 duplications may tolerate medications differently and may be more sensitive to side effects for some classes of medications, such as the serotonin reuptake inhibitor type medications (SSRI).
Thus, these should be used with caution and any new medication should be instituted in a controlled setting, with slow titration of levels and with a clear endpoint as to what the expected outcome for treatment is.
There is an increased risk of sudden, unexpected death among children and adults with this syndrome. The full cause is not yet understood but it is generally attributed to SUDEP (Sudden Unexplained Death in Epilepsy).
Treatment of Roberts syndrome is individualized and specifically aimed at improving the quality of life for those afflicted with the disorder. Some of the possible treatments include: surgery for the cleft lip and palate, correction of limb abnormalities (also through surgery), and improvement in prehensile hand grasp development.
The severity of the symptoms associated with Angelman syndrome varies significantly across the population of those affected. Some speech and a greater degree of self-care are possible among the least profoundly affected. Walking and the use of simple sign language may be beyond the reach of the more profoundly affected. Early and continued participation in physical, occupational (related to the development of fine-motor control skills), and communication (speech) therapies are believed to significantly improve the prognosis (in the areas of cognition and communication) of individuals affected by AS. Further, the specific genetic mechanism underlying the condition is thought to correlate to the general prognosis of the affected person. On one end of the spectrum, a mutation to the UBE3A gene is thought to correlate to the least affected, whereas larger deletions on chromosome 15 are thought to correspond to the most affected.
The clinical features of Angelman syndrome alter with age. As adulthood approaches, hyperactivity and poor sleep patterns improve. The seizures decrease in frequency and often cease altogether and the EEG abnormalities are less obvious. Medication is typically advisable to those with seizure disorders. Often overlooked is the contribution of the poor sleep patterns to the frequency and/or severity of the seizures. Medication may be worthwhile to help deal with this issue and improve the prognosis with respect to seizures and sleep. Also noteworthy are the reports that the frequency and severity of seizures temporarily escalate in pubescent Angelman syndrome girls, but do not seem to affect long-term health.The facial features remain recognizable with age, but many adults with AS look remarkably youthful for their age.
Puberty and menstruation begin at around the average age. Sexual development is thought to be unaffected, as evidenced by a single reported case of a woman with Angelman syndrome conceiving a female child who also had Angelman syndrome.
The majority of those with AS achieve continence by day and some by night. Angelman syndrome is not a degenerative syndrome, and thus people with AS may improve their living skills with support.
Dressing skills are variable and usually limited to items of clothing without buttons or zippers. Most adults can eat with a knife or spoon and fork, and can learn to perform simple household tasks. General health is fairly good and life-span near average. Particular problems which have arisen in adults are a tendency to obesity (more in females), and worsening of scoliosis if it is present. The affectionate nature which is also a positive aspect in the younger children may also persist into adult life where it can pose a problem socially, but this problem is not insurmountable.
There is currently no cure for Costeff syndrome. Treatment is supportive, and thus focuses on management of the symptoms. The resulting visual impairment, spasticity, and movement disorders are treated in the same way as similar cases occurring in the general population.
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
Since the syndrome is caused by a genetic mutation in the individual's DNA, a cure is not available. Treatment of the symptoms and management of the syndrome, however, is possible.
Depending on the manifestation, surgery, increased intake of glucose, special education, occupational therapy, speech therapy, and physical therapy are some methods of managing the syndrome and associated symptoms.
The caloric intake of children with SRS must be carefully controlled in order to provide the best opportunity for growth. If the child is unable to tolerate oral feeding, then enteral feeding may be used, such as the percutaneous endoscopic gastrostomy.
In children with limb-length differences or scoliosis, physiotherapy can alleviate the problems caused by these symptoms. In more severe cases, surgery to lengthen limbs may be required. To prevent aggravating posture difficulties children with leg length differences may require a raise in their shoe.
Growth hormone therapy is often prescribed as part of the treatment of SRS. The hormones are given by injection typically daily from the age of 2 years old through teenage years. It may be effective even when the patient does not have a growth hormone deficiency. Growth hormone therapy has been shown to increase the rate of growth in patients and consequently prompts 'catch up' growth. This may enable the child to begin their education at a normal height, improving their self-esteem and interaction with other children. The effect of growth hormone therapy on mature and final height is as yet uncertain. There are some theories suggesting that the therapy also assists with muscular development and managing hypoglycemia.
Most patients suffering from KTS have epilepsy that is resistant to anti-epileptic agents. Some patients showed a partial response to treatment, but very few were able to stop their epilepsy through treatment. One case was responsive to treatment using Phenobartbital and vigabatrin which are both anti-epileptic agents. Spasticity can be treated with baclofen, but not all patients are responsive to the treatment.
Currently there is no specific treatment for this condition. Management is supportive.
The long-term prognosis of Costeff syndrome is unknown, though it appears to have no effect on life expectancy at least up to the fourth decade of life. However, as mentioned previously, movement problems can often be severe enough to confine individuals to a wheelchair at an early age, and both visual acuity and spasticity tend to worsen over time.
The treatment of Muenke syndrome is focused on the correction of the abnormal skull shape and mirrors the treatment of coronal craniosynostosis. The abnormal growth patterns continue throughout the growing years; therefore, intervention, accurate diagnosis, and a customized, expertly carried-out treatment plan should be a primary concern. The treatment of Muenke syndrome is focused on correction of the abnormal skull shape and mirrors the treatment of non-syndromic coronal craniosynostosis. Although the timing of surgery can be highly individualized, surgical correction of the bicoronal craniosynostosis is most often done between 6 and 12 months of age. Surgery is usually performed through a scalp incision that lies concealed within the hair of the head. Your craniofacial surgeon will work in concert with a pediatric neurosurgeon in order to safely remove the bones of the skull. Then, the craniofacial surgeon reshapes and repositions those bones to give a more normal skull shape.
Due to its recent discovery, there are currently no existing treatments for Kleefstra syndrome.
Both patients with idic(15) and int dup(15) (together, Dup15q syndrome) feature a distinctive electroencephalography (EEG) signature or biomarker in the form of high amplitude spontaneous beta frequency (12–30 Hz) oscillations. This EEG signature was first noted as a qualitative pattern in clinical EEG readings and was later described quantitatively by researchers at the University of California, Los Angeles and their collaborators within the network of national Dup15q clinics. This group of researchers found that beta activity in children with Dup15q syndrome is significantly greater than that observed in (1) healthy, typically developing children of the same age and (2) children of the same age and IQ with autism not caused by a known genetic disorder (i.e., nonsyndromic ASD). The EEG signature appears almost identical to beta oscillations induced by benzodiazepine drugs that modulate GABA receptors, suggesting that the signature is driven by overexpression of duplicated GABA receptor genes "GABRA5", "GABRB3", and "GABRG3" found on 15q11.2-q13.1. Treatment monitoring and identification of molecular disease mechanisms may be facilitated by this biomarker.
Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in people with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients by replacing purine nucleotides and open new avenues of therapeutic intervention. Other non-clinical treatment options include educational programs tailored to their individual needs. Sensorineural hearing loss has been treated with cochlear implantation with good results. Ataxia and visual impairment from optic atrophy are treated in a routine manner. Routine immunizations against common childhood infections and annual influenza immunization can also help prevent any secondary infections from occurring.
Regular neuropsychological, audiologic, and ophthalmologic examinations are also recommended.
Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the disease-causing mutation in the family is known.
Succinic acid has been studied, and shown effective for both Leighs disease, and MELAS syndrome. If the mutation is in succinate dehydrogenase then there is a build up of succinate, in which case succinic acid won't work so the treatment is with fumaric acid to replace the fumarate than can not be made from succinate. A high-fat, low-carbohydrate diet may be followed if a gene on the X chromosome is implicated in an individual's Leigh syndrome. Thiamine (vitamin B) may be given if a deficiency of pyruvate dehydrogenase is known or suspected. The symptoms of lactic acidosis are treated by supplementing the diet with sodium bicarbonate (baking soda) or sodium citrate, but these substances do not treat the cause of Leigh syndrome. Dichloroacetate may also be effective in treating Leigh syndrome-associated lactic acidosis; research is ongoing on this substance. Coenzyme Q10 supplements have been seen to improve symptoms in some cases.
Clinical trials of the drug EPI-743 for Leigh disease are ongoing.
In 2016, John Zhang and his team at New Hope Fertility Center in New York, USA, performed a spindle transfer mitochondrial donation technique on a mother in Mexico who was at risk of producing a baby with Leigh disease. A healthy boy was born on 6 April 2016. However, it is not yet certain if the technique is completely reliable and safe.
Treatment for this condition entails surveillance of growth and contractures. Furthermore the following are treatment options:
- Thyroid hormone replacement
- Speech therapy
- Hearing aids
Each child is different and it entirely depends on which sutures are fused and how it is affecting the child as to how it is treated. Some children have severe breathing issues due to shallow mid face and may require a tracheostomy. All should be treated at a specialist centre. Cranio bands are not used in the UK.
Surgery is typically used to prevent the closure of sutures of the skull from damaging the brain's development. Without surgery, blindness and mental retardation are typical outcomes. Craniofacial surgery is a discipline of both plastic surgery and oral and maxillofacial surgery (OMFS) . To move the orbits forward, craniofacial surgeons expose the skull and orbits and reshape the bone. To treat the midface deficiency, craniofacial surgeons can move the lower orbit and midface bones forward. For jaw surgery, either plastic surgeons or OMFS surgeons can perform these operations.
Crouzon patients tend to have multiple sutures involved, most specifically bilateral coronal craniosynostoses, and either open vault surgery or strip craniectomy (if child is under 6 months) can be performed. In the later scenario, a helmet is worn for several months following surgery.
Once treated for the cranial vault symptoms, Crouzon patients generally go on to live a normal lifespan.
SGBS is similar to another overgrowth syndrome called Beckwith–Wiedemann syndrome.
SGBS Cells are a unique tool to study the function of Human adipocyte biology. These cells are similar to human primary preadipocytes, and may or may not become a popular model instead of Mouse 3T3-L1 cells to study the secretion and adipokine profile in the future. This cellular tool has been described and developed by Dr. Martin Wabitsch, University of Ulm, Germany.
Like many mitochondrial diseases, there is no cure for MERRF, no matter the means for diagnosis of the disease. The treatment is primarily symptomatic. High doses of Coenzyme Q10, B complex vitamins and L-Carnitine are the drugs that patients are treated with in order to account for the altered metabolic processed resulting in the disease. There is very little success with these treatments as therapies in hopes of improving mitochondrial function. The treatment only alleviates symptoms and these do not prevent the disease from progressing. Patients with concomitant disease, such as diabetes, deafness or cardiac disease, are treated in combination to manage symptoms.