Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Adenosine antagonists such as the methylxanthines theophylline and aminophylline, may help although studies have conflicting results.
Treatment of analgesic nephropathy begins with the discontinuation of analgesics, which often halts the progression of the disease and may even result in normalization of kidney function.
N-acetylcysteine (NAC) by mouth twice a day, on the day before and of the procedure if creatinine clearance is estimated to be less than 60 mL/min [1.00 mL/s]) may reduce risk. Some authors believe the benefit is not overwhelming. A systematic review concluded that NAC is "likely to be beneficial" but did not recommend a specific dose.
Treatment consists of addressing the cause, such as by removing an offending drug. There is no clear evidence that corticosteroids help.
Nutrition therapy consists of adequate fluid intake, which can require several liters of extra fluid.
The aim of the medical treatment is to slow the progression of chronic kidney disease by reducing blood pressure and albumin levels. The current published guidelines define ideal BP of <130/80 mmHg for patients with hypertensive nephropathy; studies show that anything higher or lower than this can increase cardiovascular risk. According to the African American Study of Kidney Disease (AASK) trial, after an additional 5 years follow-up upon completion of the 10-year trial, up to 65% of the cohort had progressive nephropathy despite having controlled the mean systolic BP level <135 mmHg.
ACE inhibitors, angiotensin receptor blockers, direct renin inhibitors and aldosterone antagonists, are pharmacological treatments that can be used to lower BP to target levels; hence reducing neuropathy and proteinuria progression. The management plan should be individualized based on the condition of the patients including comorbidities and previous medical history.
In addition, there are lifestyle changes that can be made. Weight reduction, exercise, reducing salt intake can be done to manage hypertensive nephropathy.
The ideal treatment for IgAN would remove IgA from the glomerulus and prevent further IgA deposition. This goal still remains a remote prospect. There are a few additional caveats that have to be considered while treating IgA nephropathy. IgA nephropathy has a very variable course, ranging from a benign recurrent hematuria up to a rapid progression to chronic kidney failure. Hence the decision on which patients to treat should be based on the prognostic factors and the risk of progression. Also, IgA nephropathy recurs in transplants despite the use of ciclosporin, azathioprine or mycophenolate mofetil and steroids in these patients. There are persisting uncertainties, due to the limited number of patients included in the few controlled randomized studies performed to date, which hardly produce statistically significant evidence regarding the heterogeneity of IgA nephropathy patients, the diversity of study treatment protocols, and the length of follow-up.
Patients with isolated hematuria, proteinuria < 1 g/day and normal renal function have a benign course and are generally just followed up annually. In cases where tonsillitis is the precipitating factor for episodic hematuria, tonsillectomy has been claimed to reduce the frequency of those episodes. However, it does not reduce the incidence of progressive kidney failure. Also, the natural history of the disease is such that episodes of frank hematuria reduce over time, independent of any specific treatment. Similarly, prophylactic antibiotics have not been proven to be beneficial. Dietary gluten restriction, used to reduce mucosal antigen challenge, also has not been shown to preserve kidney function. Phenytoin has also been tried without any benefit.
A subset of IgA nephropathy patients, who have minimal change disease on light microscopy and clinically have nephrotic syndrome, show an exquisite response to steroids, behaving more or less like minimal change disease. In other patients, the evidence for steroids is not compelling. Short courses of high dose steroids have been proven to lack benefit. However, in patients with preserved renal function and proteinuria (1-3.5 g/day), a recent prospective study has shown that 6 months regimen of steroids may lessen proteinuria and preserve renal function. However, the risks of long-term steroid use have to be weighed in such cases. It should be noted that the study had 10 years of patient follow-up data, and did show a benefit for steroid therapy; there was a lower chance of reaching end-stage renal disease (renal function so poor that dialysis was required) in the steroid group. Importantly, angiotensin-converting enzyme inhibitors were used in both groups equally.
Cyclophosphamide had been used in combination with anti-platelet/anticoagulants in unselected IgA nephropathy patients with conflicting results. Also, the side effect profile of this drug, including long term risk of malignancy and sterility, made it an unfavorable choice for use in young adults. However, one recent study, in a carefully selected high risk population of patients with declining GFR, showed that a combination of steroids and cyclophosphamide for the initial 3 months followed by azathioprine for a minimum of 2 years resulted in a significant preservation of renal function. Other agents such as mycophenolate mofetil, ciclosporin and mizoribine have also been tried with varying results.
A study from Mayo Clinic did show that long term treatment with omega-3 fatty acids results in reduction of progression to kidney failure, without, however, reducing proteinuria in a subset of patients with high risk of worsening kidney function. However, these results have not been reproduced by other study groups and in two subsequent meta-analyses. However, fish oil therapy does not have the drawbacks of immunosuppressive therapy. Also, apart from its unpleasant taste and abdominal discomfort, it is relatively safe to consume.
The events that tend to progressive kidney failure are not unique to IgA nephropathy and non-specific measures to reduce the same would be equally useful. These include low-protein diet and optimal control of blood pressure. The choice of the antihypertensive agent is open as long as the blood pressure is controlled to desired level. However, Angiotensin converting enzyme inhibitors and Angiotensin II receptor antagonists are favoured due to their anti-proteinuric effect.
Treatment is focused on preventing deposition of uric acid within the urinary system by increasing urine volume with potent diuretics such as furosemide. Raising the urinary pH to a level higher than 7 (alkalinization) is often difficult to attain, although sodium bicarbonate and/or acetazolamide are sometimes used in an attempt to increase uric acid solubility.
Dialysis (preferably hemodialysis) is started if the above measures fail.
Aggressive treatment of high blood lipids is warranted. Low-protein, low-salt diet may result in slower progression of CKD and reduction in proteinuria as well as controlling symptoms of advanced CKD to delay dialysis start. Replacement of erythropoietin and calcitriol, two hormones processed by the kidney, is often necessary in people with advanced disease. Guidelines recommend treatment with parenteral iron prior to treatment with erythropoietin. A target hemoglobin level of 9–12 g/dL is recommended. The normalization of hemoglobin has not been found to be of benefit. It is unclear if androgens help with anemia. Phosphate binders are also used to control the serum phosphate levels, which are usually elevated in advanced chronic kidney disease. Although the evidence for them is limited, phosphodiesterase-5 inhibitors and zinc show potential for helping men with sexual dysfunction.
At stage 5 CKD, renal replacement therapy is usually required, in the form of either dialysis or a transplant.
Treating proteinuria mainly needs proper diagnosis of the cause.
The most common cause is diabetic nephropathy; in this case, proper glycemic control may slow the progression. Medical management consists of angiotensin converting enzyme (ACE) inhibitors, which are typically first-line therapy for proteinuria. In patients whose proteinuria is not controlled with ACE inhibitors, the addition of an aldosterone antagonist (i.e., spironolactone) or angiotensin receptor blocker (ARB) may further reduce protein loss. Caution must be used if these agents are added to ACE inhibitor therapy due to the risk of hyperkalemia.
Proteinuria secondary to autoimmune disease should be treated with steroids or steroid-sparing agent plus the use of ACE inhibitors.
Generally, angiotensin converting enzyme inhibitors (ACEIs) or angiotensin II receptor antagonists (ARBs) are used, as they have been found to slow the progression. They have also been found to reduce the risk of major cardiovascular events such as myocardial infarction, stroke, heart failure, and death from cardiovascular disease when compared to placebo in individuals with CKD. Furthermore, ACEIs may be superior to ARBs for protection against progression to kidney failure and death from any cause in those with CKD. Aggressive blood pressure lowering decreases peoples risk of death.
Although the use of ACE inhibitors and ARBs represents the current standard of care for people with CKD, people progressively lose kidney function while on these medications, as seen in the IDNT and RENAL studies, which reported a decrease over time in estimated GFR (an accurate measure of CKD progression, as detailed in the K/DOQI guidelines) in people treated by these conventional methods.
The aim of treatment is to reduce renal scarring. Those children with grade II or worse should receive low dose prophylactic antibiotics (Nitrofurantoin, trimethoprim, cotrimoxazole, cefalexin in those with CRF). Hypertension should be managed with ACE inhibitor or ARBs. Other treatment modalities include surgery (endoscopic injection of collagen behind the intra-vesical ureter, ureteric re-implantation or lengthening of the submucosal ureteric tunnel) which has its protagonists.
There is no proven therapy for the CFHR5 nephropathy, although research is currently underway to develop ways of preventing kidney failure developing in those affected.
Management of hematuria is aimed at treating secondary causes of hematuria. If hematuria is a result of a UTI, treatment with antibiotics is usually initiated and urine testing repeated after 6 weeks. If hematuria is secondary to a kidney stone, then management depends on the size of the kidney stone. If the stone is small enough, usually less than 1 cm, then conservative management with analgesics and fluid hydration may be sufficient, however stones that are too bid may require removal by a urologist. Another common cause of hematuria is benign enlargement of the prostate (BPH), treatment is aimed at reducing the size of the bladder with medications like finasteride and symptomatic management with drugs like terazonsin or tamsulosin.
For people with exercise induced hematuria, management is conservative and involves cessation of strenuous activities and keeping hydrated. If the cause of hematuria is a result of malignancy, treatment and management depends on the type and stage of cancer and can involve chemotherapy, radiation or surgical resection of the tumor or organ involved.
Treatment of renal papillary necrosis is supportive, any obstruction (urethral) can be dealt with via stenting. This condition is not linked to a higher possibility of renal failure. Control of infection is important, thus antimicrobial treatment is begun, so as to avert surgery (should the infection not respond).
The kidneys are the only body system that are directly affected by tubulointerstitial nephritis. Kidney function is usually reduced; the kidneys can be just slightly dysfunctional, or fail completely.
In chronic tubulointerstitial nephritis, the most serious long-term effect is kidney failure. When the proximal tubule is injured, sodium, potassium, bicarbonate, uric acid, and phosphate reabsorption may be reduced or changed, resulting in low bicarbonate, known as metabolic acidosis, low potassium, low uric acid known as hypouricemia, and low phosphate known as hypophosphatemia. Damage to the distal tubule may cause loss of urine-concentrating ability and polyuria.
In most cases of acute tubulointerstitial nephritis, the function of the kidneys will return after the harmful drug is not taken anymore, or when the underlying disease is cured by treatment. If the illness is caused by an allergic reaction, a corticosteroid may speed the recovery kidney function; however, this is often not the case.
Chronic tubulointerstitial nephritis has no cure. Some patients may require dialysis. Eventually, a kidney transplant may be needed.
Perhaps the most difficult aspect of membranous glomerulonephritis is deciding which people to treat with immunosuppressive therapy as opposed to simple "background" or anti-proteinuric therapies. A large part of this difficulty is due to a lack of ability to predict which people will progress to end-stage renal disease, or renal disease severe enough to require dialysis. Because the above medications carry risk, treatment should not be initiated without careful consideration as to risk/benefit profile. Of note, corticosteroids (typically Prednisone) alone are of little benefit. They should be combined with one of the other 5 medications, each of which, along with prednisone, has shown some benefit in slowing down progression of membranous nephropathy. It must be kept in mind, however, that each of the 5 medications also carry their own risks, on top of prednisone.
The twin aims of treating membranous nephropathy are first to induce a remission of the nephrotic syndrome and second to prevent the development of endstage renal failure. A meta-analysis of four randomized controlled studies comparing treatments of membranous nephropathy showed that regimes comprising chlorambucil or cyclophosphamide, either alone or with steroids, were more effective than symptomatic treatment or treatment with steroids alone in inducing remission of the nephrotic syndrome.
The term "analgesic nephropathy" usually refers to damage induced by excessive use of combinations of these medications, specifically combinations that include phenacetin. For this reason, it is also called analgesic abuse nephropathy. Murray prefers the less judgmental analgesic-associated nephropathy. Both terms are abbreviated to the acronym AAN, by which the condition is also commonly known.
Though there is some evidence that dietary interventions (to lower red meat intake) can be helpful in lowering albuminuria levels, there is currently no evidence that low protein interventions correlate to improvement in kidney function. Among other measures, blood pressure control, especially with the use of inhibitors of the renin-angiotensin-system, is the most commonly used therapy to control albuminuria.
Treatment of secondary membranous nephropathy is guided by the treatment of the original disease. For treatment of idiopathic membranous nephropathy, the treatment options include immunosuppressive drugs and non-specific anti-proteinuric measures. Recommended first line therapy often includes: cyclophosphamide alternating with a corticosteroid.
The goals of treatment are to slow the progression of kidney damage and control related complications. The main treatment, once proteinuria is established, is ACE inhibitor medications, which usually reduce proteinuria levels and slow the progression of diabetic nephropathy. Other issues that are important in the management of this condition include control of high blood pressure and blood sugar levels (see diabetes management), as well as the reduction of dietary salt intake.
Management of sickle nephropathy is not separate from that of overall patient management. In addition, however, the use of ACE inhibitors has been associated with improvement of the hyperfiltration glomerulopathy. Three-year graft and patient survival in kidney transplant recipients with sickle nephropathy is lower when compared to those with other causes of end-stage kidney disease.
If neither hyperuricemia nor gout is present, then the risk of uric acid nephrolithiasis can be reduced by the use of antiuricosuric drugs. One should also consider eating a low purine diet. Additionally, making the urine pH more alkaline is protective.
According to the United States Renal Data System (USRDS), hypertensive nephropathy accounts for more than one-third of patients on hemodialysis and the annual mortality rate for patients on hemodialysis is 23.3%.
Haemodialysis is recommended for patients who progress to end-stage kidney disease (ESKD) and hypertensive nephropathy is the second most common cause of ESKD after diabetes.
Patient prognosis is dependent on numerous factors including age, ethnicity, blood pressure and glomerular filtration rate. Changes in lifestyle factors, such as reduced salt intake and increased physical activity have been shown to improve outcomes but are insufficient without pharmacological treatment.
There is as yet inadeqaute data from randomised controlled trials.
Treatment with HAART and ACE inhibitors/Angiotensin receptor blockers has been shown to be beneficial and should be given to all patients unless otherwise contra-indicated. General renoprotective measures and the treatment of the complications of nephrotic syndrome and kidney failure are adjunctive.
Corticosteroid treatment can be useful in patients who do not respond to the above treatment. There is some evidence that ciclosporin might be helpful in selective cases, however further trials are required on both steroids and ciclosporin before these drugs can become standardised treatment if at all.
Most patients with thin basement membrane disease need only reassurance. Indeed, this disease was previously referred to as "benign familial hematuria" because of its usually benign course. Angiotensin converting enzyme inhibitors have been suggested to reduce the episodes of hematuria, though controlled studies are lacking. Treating co-existing hypercalciuria and hyperuricosuria will also be helpful in reducing hematuria.
The molecular basis for thin basement membrane disease has yet to be elucidated fully; however, defects in the gene encoding the a4 chain of type IV collagen have been reported in some families.