Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most people with sickle-cell disease have intensely painful episodes called vaso-occlusive crises. However, the frequency, severity, and duration of these crises vary tremendously. Painful crises are treated symptomatically with pain medications; pain management requires opioid administration at regular intervals until the crisis has settled. For milder crises, a subgroup of patients manage on NSAIDs (such as diclofenac or naproxen). For more severe crises, most patients require inpatient management for intravenous opioids; patient-controlled analgesia (PCA) devices are commonly used in this setting. Diphenhydramine is also an effective agent that doctors frequently prescribe to help control itching associated with the use of opioids.
Management is similar to vaso-occlusive crisis, with the addition of antibiotics (usually a quinolone or macrolide, since cell wall-deficient ["atypical"] bacteria are thought to contribute to the syndrome), oxygen supplementation for hypoxia, and close observation. Should the pulmonary infiltrate worsen or the oxygen requirements increase, simple blood transfusion or exchange transfusion is indicated. The latter involves the exchange of a significant portion of the person's red cell mass for normal red cells, which decreases the percent of haemoglobin S in the patient's blood. The patient with suspected acute chest syndrome should be admitted to the hospital with worsening A-a gradient an indication for ICU admission.
Blood transfusion is sometimes used to treat iron deficiency with hemodynamic instability. Sometimes transfusions are considered for people who have chronic iron deficiency or who will soon go to surgery, but even if such people have low hemoglobin, they should be given oral treatment or intravenous iron.
Before commencing treatment, there should be definitive diagnosis of the underlying cause for iron deficiency. This is particularly the case in older patients, who are most susceptible to colorectal cancer and the gastrointestinal bleeding it often causes. In adults, 60% of patients with iron deficiency anemia may have underlying gastrointestinal disorders leading to chronic blood loss.
It is likely that the cause of the iron deficiency will need treatment as well.
Upon diagnosis, the condition can be treated with iron supplements. The choice of supplement will depend upon both the severity of the condition, the required speed of improvement (e.g. if awaiting elective surgery) and the likelihood of treatment being effective (e.g. if has underlying IBD, is undergoing dialysis, or is having ESA therapy).
Examples of oral iron that are often used are ferrous sulfate, ferrous gluconate, or amino acid chelate tablets. Recent research suggests the replacement dose of iron, at least in the elderly with iron deficiency, may be as little as 15 mg per day of elemental iron.
Treatment for alpha-thalassemia may consist of blood transfusions, and possible splenectomy; additionally, gallstones may be a problem that would require surgery. Secondary complications from febrile episode should be monitored, and most individuals live without any need for treatment
Additionally, stem cell transplantation should be considered as a treatment (and cure), which is best done in early age. Other options, such as gene therapy, are still being developed.
Individuals heterozygous for the Hb Lepore request no particular treatment. There is no anemia or, if there is, it is very mild.
In developing new chemotherapeutics(化疗方法),the efficacy of the drug against the disease is often balanced against the likely level of myelotoxicity the drug will cause. In-vitro colony forming cell (CFC) assays using normal human bone marrow grown in appropriate semi-solid media such as ColonyGEL have been shown to be useful in predicting the level of clinical myelotoxicity a certain compound might cause if administered to humans. These predictive in-vitro assays reveal effects the administered compounds have on the bone marrow progenitor cells that produce the various mature cells in the blood and can be used to test the effects of single drugs or the effects of drugs administered in combination with others.
Most affected individuals with pyruvate kinase deficiency do not require treatment. Those individuals who are more severely affected may die in utero of anemia or may require intensive treatment. With these severe cases of pyruvate kinase deficiency in red blood cells, treatment is the only option, there is no cure. However, treatment is usually effective in reducing the severity of the symptoms.
The most common treatment is blood transfusions, especially in infants and young children. This is done if the red blood cell count has fallen to a critical level. The transplantation of bone marrow has also been conducted as a treatment option.
There is a natural way the body tries to treat this disease. It increases the erythrocyte production (reticulocytosis) because reticulocytes are immature red blood cells that still contain mitochondria and so can produce ATP via oxidative phosphorylation. Therefore, a treatment option in extremely severe cases is to perform a splenectomy. This does not stop the destruction of erythrocytes but it does help increase the amount of reticulocytes in the body since most of the hemolysis occurs when the reticulocytes are trapped in the hypoxic environment of the spleen. This reduces severe anemia and the need for blood transfusions.
Bone marrow suppression due to anti-cancer chemotherapy is much harder to treat and often involves hospital admission, strict infection control, and aggressive use of intravenous antibiotics at the first sign of infection.
G-CSF is used clinically (see Neutropenia) but tests in mice suggest it may lead to bone loss.
GM-CSF has been compared to G-CSF as a treatment of chemotherapy-induced myelosuppression/Neutropenia.
In patients that have no symptoms of infection, management consists of close monitoring with serial blood counts, withdrawal of the offending agent (e.g., medication), and general advice on the significance of fever.
Transfusion of granulocytes would have been a solution to the problem. However, granulocytes live only ~10 hours in the circulation (for days in spleen or other tissue), which gives a very short-lasting effect. In addition, there are many complications of such a procedure.
At present there is no specific treatment. Many patients with haemolytic anaemia take folic acid (vitamin B) since the greater turnover of cells consumes this vitamin. During crises transfusion may be required. Clotting problems can occur for which anticoagulation may be needed. Unlike hereditary spherocytosis, splenectomy is contraindicated.
Microcytic anaemia is any of several types of anaemia characterized by small red blood cells (called microcytes). The normal mean corpuscular volume (abbreviated to MCV on full blood count results) is 80-100 fL, with smaller cells (100 fL) as macrocytic (the latter occur in macrocytic anemia).The MCV is the average red blood cell size.
In microcytic anaemia, the red blood cells (erythrocytes) are usually also hypochromic, meaning that the red blood cells appear paler than usual. This is reflected by a lower-than-normal mean corpuscular hemoglobin concentration (MCHC), a measure representing the amount of hemoglobin per unit volume of fluid inside the cell; normally about 320-360 g/L or 32-36 g/dL. Typically, therefore, anemia of this category is described as "microcytic, hypochromic anaemia".
Typical causes of microcytic anemia include:
- Childhood
- Iron deficiency anemia, by far the most common cause of anemia in general and of microcytic anemia in particular
- Thalassemia
- Adulthood
- Iron deficiency anemia
- Sideroblastic anemia, In congenital sideroblastic anemia the MCV (mean corpuscular volume) is either low or normal. In contrast, the MCV is usually high in the much more common acquired sideroblastic anemia.
- Anemia of chronic disease, although this more typically causes normochromic, normocytic anemia. Microcytic anemia has been discussed by Weng et al.
- Lead poisoning
- Vitamin B (pyridoxine) deficiency
Other causes that are typically thought of as causing normocytic anemia or macrocytic anemia must also be considered, and the presence of two or more causes of anemia can distort the typical picture.
There are five main causes of microcytic anemia forming the acronym TAILS. Thalassemia, Anemia of chronic disease, Iron deficiency, Lead poisoning and Congenital sideroblastic anemia. Only the first three are common in most parts of the world. In theory, these three can be differentiated by their red blood cell (RBC) morphologies. Anemia of chronic disease shows unremarkable RBCs, iron deficiency shows anisocytosis, anisochromia and elliptocytosis, and thalessemias demonstrate target cells and coarse basophilic stippling. In practice though elliptocytes and anisocytosis are often seen in thalessemia and target cells occasionally in iron deficiency. All three may show unremarkable RBC morphology. Coarse basophlic stippling is one reliable morphologic finding of thalessemia which does not appear in iron deficiency or anemia of chronic disease. The patient should be in an ethnically at risk group and the diagnosis is not confirmed without a confirmatory method such as hemoglobin HPLC, H body staining, molecular testing or another reliable method. Course basophlic stippling occurs in other cases as seen in Table 1
A potential complication that may occur in children that suffer acute anemia with a hemoglobin count below 5.5 g/dl is silent stroke A silent stroke is a type of stroke that does not have any outward symptoms (asymptomatic), and the patient is typically unaware they have suffered a stroke. Despite not causing identifiable symptoms a silent stroke still causes damage to the brain, and places the patient at increased risk for both transient ischemic attack and major stroke in the future.
Drug induced hemolysis has large clinical relevance. It occurs when drugs actively provoke red blood cell destruction. It can be divided in the following manner:
- Drug-induced autoimmune hemolytic anemia
- Drug-induced nonautoimmune hemolytic anemia
A total of four mechanisms are usually described, but there is some evidence that these mechanisms may overlap.
Acquired hemolytic anemia can be divided into immune and non-immune mediated forms of hemolytic anemia.
The serum iron and total iron-binding capacity (transferrin) are helpful but not diagnostic; it is quiet possible to have co-existing ineffective iron utilisation and iron deficiency, as determined by bone marrow iron status, e.g. in rheumatoid arthritis.
Megaloblastic anemia (or megaloblastic anaemia) is an anemia (of macrocytic classification) that results from inhibition of DNA synthesis during red blood cell production. When DNA synthesis is impaired, the cell cycle cannot progress from the G2 growth stage to the mitosis (M) stage. This leads to continuing cell growth without division, which presents as macrocytosis.
Megaloblastic anemia has a rather slow onset, especially when compared to that of other anemias.
The defect in red cell DNA synthesis is most often due to hypovitaminosis, specifically a deficiency of vitamin B and/or folic acid. Vitamin B deficiency alone will not cause the syndrome in the presence of sufficient folate, as the mechanism is loss of B dependent folate recycling, followed by folate-deficiency loss of nucleic acid synthesis (specifically thymine), leading to defects in DNA synthesis. Folic acid supplementation in the absence of vitamin B prevents this type of anemia (although other vitamin B-specific pathologies may be present). Loss of micronutrients may also be a cause. Copper deficiency resulting from an excess of zinc from unusually high oral consumption of zinc-containing denture-fixation creams has been found to be a cause.
Megaloblastic anemia not due to hypovitaminosis may be caused by antimetabolites that poison DNA production directly, such as some chemotherapeutic or antimicrobial agents (for example azathioprine or trimethoprim).
The pathological state of megaloblastosis is characterized by many large immature and dysfunctional red blood cells (megaloblasts) in the bone marrow and also by hypersegmented neutrophils (those exhibiting five or more nuclear lobes ("segments"), with up to four lobes being normal). These hypersegmented neutrophils can be detected in the peripheral blood (using a diagnostic smear of a blood sample).
1- Red cell indices and blood film appearances suggest iron deficiency, although peripheral blood changes are not usually as marked as in moderate or severe iron deficiency.
2- Erythropoiesis is abnormal because of ineffective iron utilisation with poor haemoglobinisation of red cell precursors and
3- Bone marrow iron stores are normal or increased and sideroblasts may be frequent and abnormal.
Due to the high mortality of untreated TTP, a presumptive diagnosis of TTP is made even when only microangiopathic hemolytic anemia and thrombocytopenia are seen, and therapy is started. Transfusion is contraindicated in thrombotic TTP, as it fuels the coagulopathy. Since the early 1990s, plasmapheresis has become the treatment of choice for TTP. This is an exchange transfusion involving removal of the patient's blood plasma through apheresis and replacement with donor plasma (fresh frozen plasma or cryosupernatant); the procedure must be repeated daily to eliminate the inhibitor and abate the symptoms. If apheresis is not available, fresh frozen plasma can be infused, but the volume that can be given safely is limited due to the danger of fluid overload. Plasma infusion alone is not as beneficial as plasma exchange. Corticosteroids (prednisone or prednisolone) are usually given. Rituximab, a monoclonal antibody aimed at the CD20 molecule on B lymphocytes, may be used on diagnosis; this is thought to kill the B cells and thereby reduce the production of the inhibitor. A stronger recommendation for rituximab exists where TTP does not respond to corticosteroids and plasmapheresis.
Caplacizumab is an alternative option in treating TTP as it has been shown that it induces a faster disease resolution compared with those patient who were on placebo. However, the use of caplacizumab was associated with increase bleeding tendencies in the studied subjects.
Most patients with refractory or relapsing TTP receive additional immunosuppressive therapy, e.g. vincristine, cyclophosphamide, splenectomy or a combination of the above.
Children with Upshaw-Schülman syndrome receive prophylactic plasma every two to three weeks; this maintains adequate levels of functioning ADAMTS13. Some tolerate longer intervals between plasma infusions. Additional plasma infusions may necessary for triggering events, such as surgery; alternatively, the platelet count may be monitored closely around these events with plasma being administered if the count drops.
Measurements of blood levels of lactate dehydrogenase, platelets, and schistocytes are used to monitor disease progression or remission. ADAMTS13 activity and inhibitor levels may be measured during follow-up, but in those without symptoms the use of rituximab is not recommended.
People with PCH are sometimes advised to avoid exposure to cold temperatures. If anemia is severe, blood transfusion may be needed. Careful compatibility testing by the blood bank is necessary because autoantibodies may interfere with blood typing. Prednisone may be used in individuals with PCH and severe anemia.
A large number of drugs
have been associated with agranulocytosis, including antiepileptics (such as carbamazepine and valproate), antithyroid drugs (carbimazole, methimazole, and propylthiouracil), antibiotics (penicillin, chloramphenicol and co-trimoxazole), ACE inhibitors (benazepril), cytotoxic drugs, gold, NSAIDs (indomethacin, naproxen, phenylbutazone, metamizole), mebendazole, allopurinol the antidepressants mianserin and mirtazapine, and some antipsychotics (the atypical antipsychotic clozapine in particular). Clozapine users in the United States, Australia, Canada, and the UK must be nationally registered for monitoring of low WBC and absolute neutrophil counts (ANC).
Although the reaction is generally idiosyncratic rather than proportional, experts recommend that patients using these drugs be told about the symptoms of agranulocytosis-related infection, such as a sore throat and a fever.
The Centers for Disease Control traced outbreaks of agranulocytosis among cocaine users, in the US and Canada between March 2008 and November 2009, to the presence of levamisole in the drug supply. The Drug Enforcement Administration reported that, as of February 2010, 71% of seized cocaine lots coming into the US contained levamisole as a cutting agent. Levamisole is an antihelminthic (i.e. deworming) drug used in animals. The reason for adding levamisole to cocaine is unknown, although it can be due to their similar melting points and solubilities.
Those with hereditary elliptocytosis have a good prognosis, only those with very severe disease have a shortened life expectancy.
The gold standard for the diagnosis of Vitamin B deficiency is a low blood level of Vitamin B. A low level of blood Vitamin B is a finding that normally can and should be treated by injections, supplementation, or dietary or lifestyle advice, but it is not a diagnosis. Hypovitaminosis B can result from a number of mechanisms, including those listed above. For determination of cause, further patient history, testing, and empirical therapy may be clinically indicated.
A measurement of methylmalonic acid (methylmalonate) can provide an indirect method for partially differentiating Vitamin B and folate deficiencies. The level of methylmalonic acid is not elevated in folic acid deficiency. Direct measurement of blood cobalamin remains the gold standard because the test for elevated methylmalonic acid is not specific enough. Vitamin B is one necessary prosthetic group to the enzyme methylmalonyl-coenzyme A mutase. Vitamin B deficiency is but one among the conditions that can lead to dysfunction of this enzyme and a buildup of its substrate, methylmalonic acid, the elevated level of which can be detected in the urine and blood.
Due to the lack of available radioactive Vitamin B, the Schilling test is now largely a historical artifact. The Schilling test was performed in the past to help determine the nature of the vitamin B deficiency. An advantage of the Schilling test was that it often included Vitamin B with intrinsic factor.
Acute PCH tends to be transient and self-limited, particularly in children. Chronic PCH associated with syphilis resolves after the syphilis is treated with appropriate antibiotics. Chronic idiopathic PCH is usually mild.