Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Management of AOS is largely symptomatic and aimed at treating the various congenital anomalies present in the individual. When the scalp and/or cranial bone defects are severe, early surgical intervention with grafting is indicated.
Treatment of Roberts syndrome is individualized and specifically aimed at improving the quality of life for those afflicted with the disorder. Some of the possible treatments include: surgery for the cleft lip and palate, correction of limb abnormalities (also through surgery), and improvement in prehensile hand grasp development.
There is currently no treatment or cure for Waardenburg syndrome. The symptom most likely to be of practical importance is deafness, and this is treated as any other irreversible deafness would be. In marked cases there may be cosmetic issues. Other abnormalities (neurological, structural, Hirschsprung disease) associated with the syndrome are treated symptomatically.
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
Non surgical treatments include steroid injections in the lower back or radiofrequency sensory ablation. Physical therapy interventions are also helpful in early cases and are focused around mobilization, neural stretching, and core strengthening exercises. Surgical intervention is usually a last resort if all conservative methods fail. It can be treated surgically with posterolateral fusion or resection of the transitional articulation.
Depending on the severity of the deformities, the treatment may include the amputation of the foot or part of the leg, lengthening of the femur, extension prosthesis, or custom shoe lifts. Amputation usually requires the use of prosthesis. Another alternative is a rotationplasty procedure, also known as Van Ness surgery. In this situation the foot and ankle are surgically removed, then attached to the femur. This creates a functional "knee joint". This allows the patient to be fit with a below knee prosthesis vs a traditional above knee prosthesis.
In less severe cases, the use of an Ilizarov apparatus can be successful in conjunction with hip and knee surgeries (depending on the status of the femoral head/kneecap) to extend the femur length to normal ranges. This method of treatment can be problematic in that the Ilizarov might need to be applied both during early childhood (to keep the femur from being extremely short at the onset of growth) and after puberty (to match leg lengths after growth has ended). The clear benefit of this approach, however, is that no prosthetics are needed and at the conclusion of surgical procedures the patient will not be biologically or anatomically different from a person born without PFFD.
Mandibuloacral dysplasia is a rare autosomal recessive syndrome characterized by mandibular hypoplasia, delayed cranial suture closure, dysplastic clavicles, abbreviated and club-shaped terminal phalanges, acroosteolysis, atrophy of the skin of the hands and feet, and typical facial changes.
Types include:
Acheiropodia (ACHP), also known as Horn-Kolb Syndrome, Acheiropody and Aleijadinhos (Brazilian type), is an autosomal recessive disorder that results in hemimelia, a lack of formation of the distal extremities.
This is a congenital defect which consists of bilateral amputations of the distal upper and lower extremities, as well as aplasia of the hands and feet. It was first discovered and is prevalent almost exclusively in Brazil.
Tetra-amelia syndrome ("" + "amelia"), also called autosomal recessive tetraamelia, is an extremely rare autosomal recessive congenital disorder characterized by the absence of all four limbs. Other areas of the body are also affected by malformations, such as the face, skull, reproductive organs, anus and pelvis. The disorder is caused by mutations in the WNT3 gene.
Ectromelia is a congenital condition where long bones are missing or underdeveloped.
Examples include:
- Amelia
- Hemimelia
- Phocomelia
- Sirenomelia
There is no cure for any congenital forms of hypertrichosis. The treatment for acquired hypertrichosis is based on attempting to address the underlying cause. Acquired forms of hypertrichosis have a variety of sources, and are usually treated by removing the factor causing hypertrichosis, e.g. a medication with undesired side-effects. All hypertrichosis, congenital or acquired, can be reduced through hair removal. Hair removal treatments are categorized into two principal subdivisions: temporary removal and permanent removal. Treatment may have adverse effects by causing scarring, dermatitis, or hypersensitivity.
Temporary hair removal may last from several hours to several weeks, depending on the method used. These procedures are purely cosmetic. Depilation methods, such as trimming, shaving, and depilatories, remove hair to the level of the skin and produce results that last several hours to several days. Epilation methods, such as plucking, electrology, waxing, sugaring, threading remove the entire hair from the root, the results lasting several days to several weeks.
Permanent hair removal uses chemicals, energy of various types, or a combination to target the cells that cause hair growth. Laser hair removal is an effective method of hair removal on hairs that have color. Laser cannot treat white hair. The laser targets the melanin color in the lower 1/3 of the hair follicle, which is the target zone. Electrolysis (electrology) uses electrical current, and/or localized heating. The U.S. Food and Drug Administration (FDA) allows only electrology to use the term "permanent hair removal" because it has been shown to be able treat all colors of hair.
Medication to reduce production of hair is currently under testing. One medicinal option suppresses testosterone by increasing the sex hormone-binding globulin. Another controls the overproduction of hair through the regulation of a luteinizing hormone.
Hemimelia comprises
- Fibular hemimelia, Congenital longitudinal deficiency of the fibula or Fibular longitudinal meromelia
- Tibial hemimelia, Congenital longitudenal deficiency of the tibia, Congenital aplasia and dysplasia of the tibia with intact fibula, Congenital longitudinal deficiency of the tibia or Tibial longitudinal meromelia
- Radial Hemimelia, Congenital longitudinal deficiency of the radius, Radial clubhand, Radial longitudinal meromelia or Radial ray agenesis
- Ulnar hemimelia, Congenital longitudinal deficiency of the ulna, Ulnar clubhand or Ulnar longitudinal meromelia
One known cause of hypertrichosis cubiti is Wiedemann-Steiner syndrome.
Tetra-amelia syndrome is characterized by the complete absence of all four limbs. The syndrome causes severe malformations of various parts of the body, including the face and head, heart, nervous system, skeleton, and genitalia. In many cases, the lungs are underdeveloped, which makes breathing difficult or impossible. Because children with tetra-amelia syndrome have such serious medical problems, most are stillborn or die shortly after birth.
Several medications can cause generalized or localized acquired hypertrichosis including:
Anticonvulsants: phenytoin
Immunosuppressants: cyclosporine
Vasodilators: diazoxide and minoxidil
Antibiotics: streptomycin
Diuretics: acetazolamide
Photosensitizes: Psoralen.
The acquired hypertrichosis is usually reversible once these medications are discontinued.
Odonto–tricho-ungual–digital–palmar syndrome is an autosomal dominant skin condition with salient clinical features of natal teeth, trichodystrophy, prominent interdigital folds, simian-like hands with transverse palmar creases, and ungual digital dystrophy.
Dysmelia can be caused by
- inheritance of abnormal genes, e.g. polydactyly, ectrodactyly or brachydactyly, symptoms of deformed limbs then often occur in combination with other symptoms (syndromes)
- external causes during pregnancy (thus not inherited), e.g. via amniotic band syndrome
- teratogenic drugs (e.g. thalidomide, which causes phocomelia) or environmental chemicals
- ionizing radiation (nuclear weapons, radioiodine, radiation therapy)
- infections
- metabolic imbalance
Dysmelia (from Gr. δυσ- "dys", "bad" + μέλ|ος "mél|os", "limb" + Eng. suff. -ia) is a congenital disorder of a limb resulting from a disturbance in embryonic development.
For most cases the diagnosis for congenital amputation is not made until the infant is born. One procedure that is helpful in determining this condition in an infant is an ultrasound examination of a fetus when still in the mother's abdomen as it can reveal the absence of a limb. However, since ultrasounds are routine they may not pick up all the signs of some of the more subtle birth defects.
The most popular method of treatment for congenital amputation is having the child be fit for a prosthesis which can lead to normal development, so the muscles don't atrophy. If there is congenital amputation of the fingers, plastic surgery can be performed by using the big toe or second toes in place of the missing fingers of the hand.
In rare cases of amniotic banding syndrome, if diagnosed "in utero", fetal surgery may be considered to save a limb which is in danger of amputation.
Hypertrichosis cubiti (also known as "hairy elbow syndrome") is a cutaneous condition characterized by multiple terminal hairs on both elbows in children.
In humans, a single transverse palmar crease is a single crease that extends across the palm of the hand, formed by the fusion of the two palmar creases (known in palmistry as the "heart line" and the "head line") and is found in people with Down Syndrome. It is also found in 1.5% of the general population in at least one hand.
Because it resembles the usual condition of non-human simians, it is also known as a simian crease or simian line, although these terms have widely fallen out of favor due to their pejorative connotation.
1. Clinical Genetics and Genetic Testing
Genetic testing is necessary to confirm the diagnosis of PMS. A prototypical terminal deletion of 22q13 can be uncovered by karyotype analysis, but many terminal and interstitial deletions are too small to detect with this method. Chromosomal microarray should be ordered in children with suspected developmental delays or ASD. Most cases will be identified by microarray; however, small variations in genes might be missed. The falling cost for whole exome sequencing may replace DNA microarray technology for candidate gene evaluation. Biological parents should be tested with fluorescence "in situ" hybridization (FISH) to rule out balanced translocations or inversions. Balanced translocation in a parent increases the risk for recurrence and heritability within families (figure 3).
Clinical genetic evaluations and dysmorphology exams should be done to evaluate growth, pubertal development, dysmorphic features (table 1) and screen for organ defects (table 2)
2. Cognitive and Behavioral Assessment
All patients should undergo comprehensive developmental, cognitive and behavioral assessments by clinicians with experience in developmental disorders. Cognitive evaluation should be tailored for individuals with significant language and developmental delays. All patients should be referred for specialized speech/language, occupational and physical therapy evaluations.
3. Neurological Management
Individuals with PMS should be followed by a pediatric neurologist regularly to monitor motor development, coordination and gait, as well as conditions that might be associated with hypotonia. Head circumference should be performed routinely up until 36 months. Given the high rate of seizure disorders (up to 41% of patients) reported in the literature in patients with PMS and its overall negative impact on development, an overnight video EEG should be considered early to rule out seizure activity. In addition, a baseline structural brain MRI should be considered to rule out the presence of structural abnormalities.
4. Nephrology
All patients should have a baseline renal and bladder ultrasonography and a voiding cystourethrogram should be considered to rule out structural and functional abnormalities. Renal abnormalities are reported in up to 38% of patients with PMS. Vesicouretral reflux, hydronephrosis, renal agenesis, dysplasic kidney, polycystic kidney and recurrent urinary tract infections have all been reported in patients with PMS.
5. Cardiology
Congenital heart defects (CHD) are reported in samples of children with PMS with varying frequency (up to 25%)(29,36). The most common CHD include tricuspid valve regurgitation, atrial septal defects and patent ductus arteriousus. Cardiac evaluation, including echocardiography and electrocardiogram, should be considered.
6. Gastroenterology
Gastrointestinal symptoms are common in individuals with PMS. Gastroesophageal reflux, constipation, diarrhea and cyclic vomiting are frequently described.
Table 3: Clinical Assessment Recommendations in Phelan McDermid Syndrome.
Orthotics and corticosteroid injections are widely used conservative treatments for Morton’s neuroma. In addition to traditional orthotic arch supports, a small foam or fabric pad may be positioned under the space between the two affected metatarsals, immediately behind the bone ends. This pad helps to splay the metatarsal bones and create more space for the nerve so as to relieve pressure and irritation. It may however also elicit mild uncomfortable sensations of its own, such as the feeling of having an awkward object under one's foot. Corticosteroid injections can relieve inflammation in some patients and help to end the symptoms. For some patients, however, the inflammation and pain recur after some weeks or months, and corticosteroids can only be used a limited number of times because they cause progressive degeneration of ligamentous and tendinous tissues.
Sclerosing alcohol injections are an increasingly available treatment alternative if the above management approaches fail. Dilute alcohol (4%) is injected directly into the area of the neuroma, causing toxicity to the fibrous nerve tissue. Frequently, treatment must be performed 2–4 times, with 1–3 weeks between interventions. A 60–80% success rate has been achieved in clinical studies, equal to or exceeding the success rate for surgical neurectomy with fewer risks and less significant recovery. If done with more concentrated alcohol under ultrasound guidance, the success rate is considerably higher and fewer repeat procedures are needed.
Radio Frequency Ablation is also used in the treatment of Morton's Neuroma The outcomes appear to be equally or more reliable than alcohol injections especially if the procedure is done under ultrasound guidance.
If such interventions fail, patients are commonly offered surgery known as neurectomy, which involves removing the affected piece of nerve tissue. Postoperative scar tissue formation (known as stump neuroma) can occur in approximately 20%-30% of cases, causing a return of neuroma symptoms. Neurectomy can be performed using one of two general methods. Making the incision from the dorsal side (the top of the foot) is the more common method but requires cutting the deep transverse metatarsal ligament that connects the 3rd and 4th metatarsals in order to access the nerve beneath it. This results in exaggerated postoperative splaying of the 3rd and 4th digits (toes) due to the loss of the supporting ligamentous structure. This has aesthetic concerns for some patients and possible though unquantified long-term implications for foot structure and health. Alternatively, making the incision from the ventral side (the sole of the foot) allows more direct access to the affected nerve without cutting other structures. However, this approach requires a greater post-operative recovery time where the patient must avoid weight bearing on the affected foot because the ventral aspect of the foot is more highly enervated and impacted by pressure when standing. It also has an increased risk that scar tissue will form in a location that causes ongoing pain.
Cryogenic neuroablation is a lesser known alternative to neurectomy surgery. Cryogenic neuroablation (also known as cryo injection therapy, cryoneurolysis, cryosurgery or cryoablation) is a term that is used to describe the destruction of axons to prevent them from carrying painful impulses. This is accomplished by making a small incision (~3 mm) and inserting a cryoneedle that applies extremely low temperatures of between −50 °C to −70 °C to the nerve/neuroma. This results in degeneration of the intracellular elements, axons, and myelin sheath (which houses the neuroma) with wallerian degeneration. The epineurium and perineurium remain intact, thus preventing the formation of stump neuroma. The preservation of these structures differentiates cryogenic neuroablation from surgical excision and neurolytic agents such as alcohol. An initial study showed that cryo neuroablation is initially equal in effectiveness to surgery but does not have the risk of stump neuroma formation.
Recently, an increasing number of procedures are being performed at specialist centers which offer a range of procedures to treat Morton's neuroma under ultrasound guidance. Recent studies have shown excellent results for the treatment of Morton's neuroma with ultrasound guided sclerosing alcohol injections, ultrasound guided radiofrequency ablation, and ultrasound guided cryo-ablation.
Roberts syndrome, or sometimes called "pseudothalidomide syndrome", is an extremely rare genetic disorder that is characterized by mild to severe prenatal retardation or disruption of cell division, leading to malformation of the bones in the skull, face, arms, and legs.
Roberts syndrome is also known by many other names, including: hypomelia-hypotrichosis-facial hemangioma syndrome, SC syndrome (once thought to be an entirely separate disease), pseudothalidomide syndrome, Roberts-SC phocomelia syndrome, SC phocomelia syndrome, Appelt-Gerken-Lenz syndrome, RBS, SC pseudothalidomide syndrome, and tetraphocomelia-cleft palate syndrome. It is a genetic disorder caused by the mutation of the ESCO2 gene on 8th chromosome. Named after the famous Philadelphia surgeon and physician, Dr. John Bingham Roberts (1852–1924), who first described the syndrome in 1919, it is one of the rarest autosomal recessive disorders, affecting approximately 150 known individuals.
The syndrome is both autosomal, in that there are equal numbers of copies of the gene in both males and females, and recessive, meaning the child must inherit the defective gene from both parents. The mutation causes cell division to occur slowly or unevenly, and the cells with abnormal genetic content die. Roberts syndrome can affect both males and females. Although the disorder is rare, the affected group is diverse. The mortality rate is high in severely affected individuals.