Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If the diagnostic workup reveals a systemic disease process, directed therapies to treat that underlying cause should be initiated. If the amaurosis fugax is caused by an atherosclerotic lesion, aspirin is indicated, and a carotid endarterectomy considered based on the location and grade of the stenosis. Generally, if the carotid artery is still patent, the greater the stenosis, the greater the indication for endarterectomy. "Amaurosis fugax appears to be a particularly favorable indication for carotid endarterectomy. Left untreated, this event carries a high risk of stroke; after carotid endarterectomy, which has a low operative risk, there is a very low postoperative stroke rate." However, the rate of subsequent stroke after amaurosis is significantly less than after a hemispheric TIA, therefore there remains debate as to the precise indications for which a carotid endarterectomy should be performed. If the full diagnostic workup is completely normal, patient observation is recommended.
Quick determination of the cause may lead to urgent measures to save the eye and life of the patient. High clinical suspicion should be kept for painless vision loss in patients with atherosclerosis, deep venous thrombosis, atrial fibrillation, pulmonary thromboembolism or other previous embolic episodes. Those caused by a carotid artery embolism or occlusion have the potential for further stroke by detachment of embolus and migration to an end-artery of the brain. Hence, proper steps to prevent such an eventuality need to be taken.
Retinal arterial occlusion is an ophthalmic emergency, and prompt treatment is essential. Completely anoxic retina in animal models causes irreversible damage in about 90 minutes. Nonspecific methods to increase blood flow and dislodge emboli include digital massage, 500 mg IV acetazolamide and 100 mg IV methylprednisolone (for possible arteritis). Additional measures include paracentesis of aqueous humor to decrease IOP acutely. An ESR should be drawn to detect possible giant cell arteritis. Improvement can be determined by visual acuity, visual field testing, and by ophthalmoscopic examination.
At a later stage, pan-retinal photocoagulation (PRP) with an argon laser appears effective in reducing the neovascular components and their sequelae.
The visual prognosis for ocular ischemic syndrome varies from usually poor to fair, depending on speed and effectiveness of the intervention. However, prompt diagnosis is crucial as the condition may be a presenting sign of serious cerebrovascular and ischemic heart diseases.
In 2009, the Undersea and Hyperbaric Medical Society added "central retinal artery occlusion" to their list of approved indications for hyperbaric oxygen (HBO). When used as an adjunctive therapy, the edema reducing properties of HBO, along with down regulation of inflammatory cytokines may contribute to the improvement in vision. Prevention of vision loss requires that certain conditions be met: the treatment be started before irreversible damage has occurred (over 24 hours), the occlusion must not also occur at the ophthalmic artery, and treatment must continue until the inner layers of the retina are again oxygenated by the retinal arteries.
Whether blindness is treatable depends upon the cause. Surgical intervention can be performed in PCG which is childhood glaucoma, usually starting early in childhood. Primary congenital glaucoma is caused by an abnormal drainage of the eye. However, surgical intervention is yet to prove effective.
One form of LCA, patients with LCA2 bearing a mutation in the RPE65 gene, has been successfully treated in clinical trials using gene therapy. The results of three early clinical trials were published in 2008 demonstrating the safety and efficacy of using adeno-associated virus to deliver gene therapy to restore vision in LCA patients. In all three clinical trials, patients recovered functional vision without apparent side-effects. These studies, which used adeno-associated virus, have spawned a number of new studies investigating gene therapy for human retinal disease.
The results of a phase 1 trial conducted by the University of Pennsylvania and Children’s Hospital of Philadelphia and published in 2009 showed sustained improvement in 12 subjects (ages 8 to 44) with RPE65-associated LCA after treatment with AAV2-hRPE65v2, a gene replacement therapy. Early intervention was associated with better results. In that study, patients were excluded based on the presence of particular antibodies to the vector AAV2 and treatment was only administered to one eye as a precaution. A 2010 study testing the effect of administration of AAV2-hRPE65v2 in both eyes in animals with antibodies present suggested that immune responses may not complicate use of the treatment in both eyes.
Eye Surgeon Dr. Al Maguire and gene therapy expert Dr. Jean Bennett developed the technique used by the Children's Hospital.
Dr. Sue Semple-Rowland at the University of Florida has recently restored sight in an avian model using gene therapy.
Braille is a universal way to learn how to read and write, for the blind. A refreshable braille display is an assistive learning device that can help such children in school. Schools for the blind are a form of management, however the limitations of using studies done in such schools has been recognized. Children that are enrolled presently, usually, had developed blindness 5 or more years prior to enrollment, consequently not reflecting current possible causes. About 66% of children with visual impairment also have one other disability (comorbidity), be it, intellectual disabilities, cerebral palsy, or hearing loss. Eye care/screening for children within primary health care is important as catching ocular disease issues can lead to better outcomes.
Those experiencing amaurosis are usually advised to consult a physician immediately as any form of vision loss, even if temporary, is a symptom that may indicate the presence of a serious ocular or systemic problem.
Congenital nystagmus has traditionally been viewed as non-treatable, but medications have been discovered in recent years that show promise in some patients. In 1980, researchers discovered that a drug called baclofen could effectively stop periodic alternating nystagmus. Subsequently, gabapentin, an anticonvulsant, was found to cause improvement in about half the patients who received it to relieve symptoms of nystagmus. Other drugs found to be effective against nystagmus in some patients include memantine, levetiracetam, 3,4-diaminopyridine (available in the US to eligible patients with downbeat nystagmus at no cost under an expanded access program), 4-aminopyridine, and acetazolamide. Several therapeutic approaches, such as contact lenses, drugs, surgery, and low vision rehabilitation have also been proposed. For example, it has been proposed that mini-telescopic eyeglasses suppress nystagmus.
Surgical treatment of Congenital Nystagmus is aimed at improving the abnormal head posture, simulating artificial divergence or weakening the horizontal recti muscles. Clinical trials of a surgery to treat nystagmus (known as tenotomy) concluded in 2001. Tenotomy is now being performed regularly at numerous centres around the world. The surgery developed by Louis F. Dell'Osso Ph.D. aims to reduce the eye shaking (oscillations), which in turn tends to improve visual acuity.
Acupuncture has conflicting evidence as to having beneficial effects on the symptoms of nystagmus. Benefits have been seen in treatments where acupuncture points of the neck were used, specifically points on the sternocleidomastoid muscle. Benefits of acupuncture for treatment of nystagmus include a reduction in frequency and decreased slow phase velocities which led to an increase in foveation duration periods both during and after treatment. By the standards of evidence-based medicine, the quality of these studies can be considered poor (for example, Ishikawa has a study sample size of just six, is unblinded and without proper control), and given high quality studies showing that acupuncture has no effect beyond placebo, the results of these studies have to be considered clinically irrelevant until higher quality studies are produced.
Physical therapy or Occupational therapy is also used to treat nystagmus. Treatment consist of learning compensatory strategies to take over for the impaired system.
Prior to 1990, amaurosis fugax could, "clinically, be divided into four identifiable symptom complexes, each with its underlying pathoetiology: embolic, hypoperfusion, angiospasm, and unknown". In 1990, the causes of amaurosis fugax were better refined by the Amaurosis Fugax Study Group, which has defined five distinct classes of transient monocular blindness based on their supposed cause: embolic, hemodynamic, ocular, neurologic, and idiopathic (or "no cause identified") Concerning the pathology underlying these causes (except idiopathic), "some of the more frequent causes include atheromatous disease of the internal carotid or ophthalmic artery, vasospasm, optic neuropathies, giant cell arteritis, angle-closure glaucoma, increased intracranial pressure, orbital compressive disease, a steal phenomenon, and blood hyperviscosity or hypercoagulability."
While nothing currently can be done to stop or reverse the retinal degeneration, there are steps that can be taken to slow the rate of vision loss. UV-blocking sunglasses for outdoors, appropriate dietary intake of fresh fruit and leafy green vegetables, antioxidant vitamin supplements, and regular intake of dietary omega-3 very-long-chain fatty acids are all recommended.
One study found that a dietary supplement of lutein increases macular pigment levels in patients with choroideremia. Over a long period of time, these elevated levels of pigmentation could slow retinal degeneration. Additional interventions that may be needed include surgical correction of retinal detachment and cataracts, low vision services, and counseling to help cope with depression, loss of independence, and anxiety over job loss.
The World Health Organization estimates that 80% of visual loss is either preventable or curable with treatment. This includes cataracts, onchocerciasis, trachoma, glaucoma, diabetic retinopathy, uncorrected refractive errors, and some cases of childhood blindness. The Center for Disease Control and Prevention estimates that half of blindness in the United States is preventable.
Gene therapy is currently not a treatment option, however human clinical trials for both choroideremia and Leber's congenital amaurosis (LCA) have produced somewhat promising results.
Clinical trials of gene therapy for patients with LCA began in 2008 at three different sites. In general, these studies found the therapy to be safe, somewhat effective, and promising as a future treatment for similar retinal diseases.
In 2011, the first gene therapy treatment for choroideremia was administered. The surgery was performed by Robert MacLaren, Professor of Ophthalmology at the University of Oxford and leader of the Clinical Ophthalmology Research Group at the Nuffield Laboratory of Ophthalmology (NLO).
In the study, 2 doses of the AAV.REP1 vector were injected subretinally in 12 patients with choroideremia.
There study had 2 objectives:
- to assess the safety and tolerability of the AAV.REP1 vector
- to observe the therapeutic benefit, or slowing of the retinal degeneration, of the gene therapy during the study and at a 24-month post-treatment time point
Despite retinal detachment caused by the injection, the study observed initial improved rod and cone function, warranting further study.
In 2016, researchers were optimistic that the positive results of 32 choroideremia patients treated over four and a half years with gene therapy in four countries could be long-lasting.
Aside from medical help, various sources provide information, rehabilitation, education, and work and social integration.
This condition can also occur in ruminants suffering from a vitamin B (thiamine) deficiency due to thiamine-related cerebrocortical necrosis (CCN).
Ocular ischemic syndrome is the constellation of ocular signs and symptoms secondary to severe, chronic arterial hypoperfusion to the eye. Amaurosis fugax is a form of acute vision loss caused by reduced blood flow to the eye; it may be a warning sign of an impending stroke, as both stroke and retinal artery occlusion can be caused by thromboembolism due to atherosclerosis elsewhere in the body (such as coronary artery disease and especially carotid atherosclerosis). Consequently, those with transient blurring of vision are advised to urgently seek medical attention for a thorough evaluation of the carotid artery. Anterior segment ischemic syndrome is a similar ischemic condition of anterior segment usually seen in post-surgical cases. Retinal artery occlusion (such as central retinal artery occlusion or branch retinal artery occlusion) leads to rapid death of retinal cells, thereby resulting in severe loss of vision.
An antiplatelet, such as aspirin, is started for secondary prevention of stroke after most TIAs. An exception is TIAs due to blood clots originating from the heart, in which case anticoagulants are generally recommended. After TIA or minor stroke, aspirin therapy has been shown to reduce the short-term risk of recurrent stroke by 60-70%, and the long-term risk of stroke by 13%.
The typical therapy may include aspirin alone, a combination of aspirin plus extended-release dipyridamole, or clopidogrel alone. Clopidogrel and aspirin have similar efficacies and side effect profiles. Clopidogrel is more expensive and has a slightly decreased risk of GI bleed. There is some evidence that giving both aspirin and clopidogrel within 24 hours of a TIA or minor stroke is more effective than aspirin alone. Another antiplatelet, ticlopidine, is rarely used due to increased side effects.
Anticoagulants may be started if the TIA is thought to be attributable to atrial fibrillation. Atrial fibrillation is an abnormal heart rhythm that may cause the formation of blood clots that can travel to the brain, resulting in TIAs or ischemic strokes. Atrial fibrillation increases stroke risk by five times, is thought to cause 10-12% of all ischemic strokes in the US. Anticoagulant therapy can decrease the relative risk of ischemic stroke in those with atrial fibrillation by 67% Warfarin is a common anticoagulant used, but direct acting oral anticoagulants (DOACs), such as apixaban, have been shown to be equally effective while also conferring a lower risk of bleeding. Generally, anticoagulants and antiplatelets are not used in combination, as they result in increased bleeding risk without a decrease in stroke risk. However, combined antiplatelet and anticoagulant therapy may be warranted if the patient has symptomatic coronary artery disease in addition to atrial fibrillation.
Sometimes, myocardial infarction (“heart attack”) may lead to the formation of a blood clot in one of the chambers of the heart. If this is thought to be the cause of the TIA, people may be temporarily treated with warfarin or other anticoagulant to decrease the risk of future stroke.
There is generally no treatment to cure color deficiencies. ″The American Optometric Association reports a contact lens on one eye can increase the ability to differentiate between colors, though nothing can make you truly see the deficient color.″
Optometrists can supply colored spectacle lenses or a single red-tint contact lens to wear on the non-dominant eye, but although this may improve discrimination of some colors, it can make other colors more difficult to distinguish. A 1981 review of various studies to evaluate the effect of the X-chrom contact lens concluded that, while the lens may allow the wearer to achieve a better score on certain color vision tests, it did not correct color vision in the natural environment. A case history using the X-Chrom lens for a rod monochromat is reported and an X-Chrom manual is online.
Lenses that filter certain wavelengths of light can allow people with a cone anomaly, but not dichromacy, to see better separation of colors, especially those with classic "red/green" color blindness. They work by notching out wavelengths that strongly stimulate both red and green cones in a deuter- or protanomalous person, improving the distinction between the two cones' signals. As of 2013, sunglasses that notch out color wavelengths are available commercially.
Genetic tests and related research are currently being performed at Centogene AG in Rostock, Germany; John and Marcia Carver Nonprofit Genetic Testing Laboratory in Iowa City, IA; GENESIS Center for Medical Genetics in Poznan, Poland; Miraca Genetics Laboratories in Houston, TX; Asper Biotech in Tartu, Estonia; CGC Genetics in Porto, Portugal; CEN4GEN Institute for Genomics and Molecular Diagnostics in Edmonton, Canada; and Reference Laboratory Genetics - Barcelona, Spain.
Treatment of an episode of cholesterol emboli is generally symptomatic, i.e. it deals with the symptoms and complications but cannot reverse the phenomenon itself. In kidney failure resulting from cholesterol crystal emboli, statins (medication that reduces cholesterol levels) have been shown to halve the risk of requiring hemodialysis.
Children with Kawasaki disease should be hospitalized and cared for by a physician who has experience with this disease. When in an academic medical center, care is often shared between pediatric cardiology, pediatric rheumatology, and pediatric infectious disease specialists (although no specific infectious agent has been identified as yet). Treatment should be started as soon as the diagnosis is made to prevent damage to the coronary arteries.
Intravenous immunoglobulin (IVIG) is the standard treatment for Kawasaki disease and is administered in high doses with marked improvement usually noted within 24 hours. If the fever does not respond, an additional dose may have to be considered. In rare cases, a third dose may be given to the child. IVIG by itself is most useful within the first seven days of onset of fever, in terms of preventing coronary artery aneurysm.
Salicylate therapy, particularly aspirin, remains an important part of the treatment (though questioned by some) but salicylates alone are not as effective as IVIG. Aspirin therapy is started at high doses until the fever subsides, and then is continued at a low dose when the patient returns home, usually for two months to prevent blood clots from forming. Except for Kawasaki disease and a few other indications, aspirin is otherwise normally not recommended for children due to its association with Reye's syndrome. Because children with Kawasaki disease will be taking aspirin for up to several months, vaccination against varicella and influenza is required, as these infections are most likely to cause Reye's syndrome.
High-dose aspirin is associated with anemia and does not confer benefit to disease outcomes.
Corticosteroids have also been used, especially when other treatments fail or symptoms recur, but in a randomized controlled trial, the addition of corticosteroid to immune globulin and aspirin did not improve outcome. Additionally, corticosteroid use in the setting of Kawasaki disease is associated with increased risk of coronary artery aneurysm, so its use is generally contraindicated in this setting. In cases of Kawasaki disease refractory to IVIG, cyclophosphamide and plasma exchange have been investigated as possible treatments, with variable outcomes.
Options include:
- Medications alone (an antiplatelet drug (or drugs) and control of risk factors for atherosclerosis).
- Medical management plus carotid endarterectomy or carotid stenting, which is preferred in patients at high surgical risk and in younger patients.
- Control of smoking, high blood pressure, and high levels of lipids in the blood.
The goal of treatment is to reduce the risk of stroke (cerebrovascular accident). Intervention (carotid endarterectomy or carotid stenting) can cause stroke; however, where the risk of stroke from medical management alone is high, intervention may be beneficial. In selected trial participants with asymptomatic severe carotid artery stenosis, carotid endarterectomy reduces the risk of stroke in the next 5 years by 50%, though this represents a reduction in absolute incidence of all strokes or perioperative death of approximately 6%. In most centres, carotid endarterectomy is associated with a 30-day stroke or mortality rate of < 3%; some areas have higher rates.
Clinical guidelines (such as those of National Institute for Clinical Excellence (NICE) ) recommend that all patients with carotid stenosis be given medication, usually blood pressure lowering medications, anti-clotting medications, anti-platelet medications (such as aspirin or clopidogrel), and especially statins (which were originally prescribed for their cholesterol-lowering effects but were also found to reduce inflammation and stabilize plaque).
NICE and other guidelines also recommend that patients with "symptomatic" carotid stenosis be given carotid endarterectomy urgently, since the greatest risk of stroke is within days. Carotid endarterectomy reduces the risk of stroke or death from carotid emboli by about half.
For people with stenosis but no symptoms, the interventional recommendations are less clear. Such patients have a historical risk of stroke of about 1-2% per year. Carotid endarterectomy has a surgical risk of stroke or death of about 2-4% in most institutions. In the large Asymptomatic Carotid Surgery Trial (ACST) endarterectomy reduced major stroke and death by about half, even after surgical death and stroke was taken into account. According to the Cochrane Collaboration the absolute benefit of surgery is small. For intervention using stents, there is insufficient evidence to support stenting rather than open surgery, and several trials, including the ACST-2, are comparing these 2 procedures.
The largest clinical trial performed, CREST, randomized patients at risk for a stroke from carotid artery blockage to either open surgery (carotid endarterectomy) or carotid stent placement with embolic protection. This trial followed patients for 4 years and found no overall difference in the primary end point of both treatment arms (myocardial infarctions, any perioperative strokes or ipsilateral strokes within 4 years, or death during procedure). Patients assigned to the surgical arm experienced more perioperative myocardial infarctions compared to the stenting group; however, the difference was not statistically significant (6.8% vs or 7.2% HR for stenting is 1.1 CI 0.81-1.51 P value 0.51) whereas patients assigned to the carotid stent arm experienced more periprocedural strokes compared to endarteretomy (6.4% vs 4.7% HR for stenting 1.5 P-0.03). There was no mortality difference and no difference for major (disabling) strokes between surgery and stenting. It was noted that there did seem to exist an age cutoff where below 75 years old endarterectomy provided more positive outcomes and over 75 stenting offered a better risk profile. However, it should be noted that the CREST trial was not designed for subgroup analysis and thus not powered enough to draw any statistically significant conclusions. A later study published in 2013 evaluated how these perioperative complications affect long-term survival. This study showed that experiencing a stroke within the first year conferred a two-fold lower survival rate (Hazard Ratio(HR) 6.6 [CI 3.7-12]) than those who experienced a perioperative myocardial infarction at two years post intervention (HR 3.6 [CI 2-6.8]). This difference in mortality, however, converges and becomes negligible at 5 years (HR 2.7 [CI 1.7-4.3] vs HR 2.8 [CI 1.8-4.3]). A 2010 study found benefits (reduced strokes) from carotid endarterectomy in those without symptoms who are under 75.
The cause for pathological nystagmus may be congenital, idiopathic, or secondary to a pre-existing neurological disorder. It also may be induced temporarily by disorientation (such as on roller coaster rides) or by certain drugs (alcohol and other central nervous system depressants, inhalant drugs, stimulants, psychedelic drugs, and dissociative drugs).
As of 2017, eleven disease-modifying medications have been approved by regulatory agencies for relapsing-remitting multiple sclerosis (RRMS). They are interferon beta-1a, interferon beta-1b, glatiramer acetate, mitoxantrone, natalizumab, fingolimod, teriflunomide, dimethyl fumarate, alemtuzumab, daclizumab, and ocrelizumab.
Their cost effectiveness as of 2012 is unclear. In May 2016 the FDA approved daclizumab for the treatment of relapsing multiple sclerosis in adults, with requirements for postmarketing studies and submission of a formal risk evaluation and mitigation strategy. In March 2017 the FDA approved ocrelizumab, a humanized anti-CD20 monoclonal antibody, as a treatment for RRMS, with requirements for several Phase IV clinical trials.
In RRMS they are modestly effective at decreasing the number of attacks. The interferons and glatiramer acetate are first-line treatments and are roughly equivalent, reducing relapses by approximately 30%. Early-initiated long-term therapy is safe and improves outcomes. Natalizumab reduces the relapse rate more than first-line agents; however, due to issues of adverse effects is a second-line agent reserved for those who do not respond to other treatments or with severe disease. Mitoxantrone, whose use is limited by severe adverse effects, is a third-line option for those who do not respond to other medications. Treatment of clinically isolated syndrome (CIS) with interferons decreases the chance of progressing to clinical MS. Efficacy of interferons and glatiramer acetate in children has been estimated to be roughly equivalent to that of adults. The role of some newer agents such as fingolimod, teriflunomide, and dimethyl fumarate, as of 2011, is not yet entirely clear.
As of 2017, rituximab was widely used off-label to treat RRMS.