Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no known curative treatment presently. Hearing aids and cataract surgery may be of use. Control of seizures, heart failure and treatment of infection is important. Tube feeding may be needed.
There are no treatment to return to its normal functions. However, there are treatments for the different symptoms.
For the Developmental symptoms, Educational intervention and speech therapy beginning in infancy could help to reduce the high risk for motor, cognitive, speech, and language delay
For theSkeletal features, referral to an orthopedist for consideration of surgical release of contractures. In addition,early referral to physical therapy could help increase joint mobility.
Lastly, Thyroid hormone replacement could help out the thyroid dysfunction
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
Many of the congenital malformations found with Malpuech syndrome can be corrected surgically. These include cleft lip and palate, omphalocele, urogenital and craniofacial abnormalities, skeletal deformities such as a caudal appendage or scoliosis, and hernias of the umbillicus. The primary area of concern for these procedures applied to a neonate with congenital disorders including Malpuech syndrome regards the logistics of anesthesia. Methods like tracheal intubation for management of the airway during general anesthesia can be hampered by the even smaller, or maldeveloped mouth of the infant. For regional anesthesia, methods like spinal blocking are more difficult where scoliosis is present. In a 2010 report by Kiernan et al., a four-year-old girl with Malpuech syndrome was being prepared for an unrelated tonsillectomy and adenoidectomy. While undergoing intubation, insertion of a laryngoscope, needed to identify the airway for the placement of the endotracheal tube, was made troublesome by the presence of micrognathia attributed to the syndrome. After replacement with a laryngoscope of adjusted size, intubation proceeded normally. Successful general anesthesia followed.
A rare follow-up of a male with Malpuech syndrome was presented by Priolo et al. (2007). Born at term from an uneventful pregnancy and delivery, the infant underwent a surgical repair of a cleft lip and palate. No problems were reported with the procedure. A heart abnormality, atrial septal defect, was also apparent but required no intervention. At age three years, mental retardation, hyperactivity and obsessive compulsive disorder were diagnosed; hearing impairment was diagnosed at age six, managed with the use of hearing aids. Over the course of the decade that followed, a number of psychiatric evaluations were performed. At age 14, he exhibited a fear of physical contact; at age 15, he experienced a severe psychotic episode, characterized by agitation and a loss of sociosexual inhibition. This array of symptoms were treated pharmocologically (with prescription medications). He maintained a low level of mental deficiency by age 17, with moments of compulsive echolalia.
Treatment of all categories of congenital clasped thumbs should start with either serial plaster casting or wearing a static or dynamic splint for a period of six months, while massaging the hand. Extension by splinting shows reduction of the flexion contracture. To gain optimal results, it is important to start this treatment before the age of six months. The result of this therapy is better in less severe deformities. In most uncomplicated cases, a satisfactory result can be gained when splint therapy starts before the age of six months. Splinting should be tried for at least three months and possibly for as long as six months or longer. If the result of splint therapy stagnates, surgery treatment is indicated.
Treatment of congenital clasped thumb includes two types of therapy: conservative and surgical.
MCDK is not treatable. However, the patient is observed periodically for the first few years during which ultrasounds are generally taken to ensure the healthy kidney is functioning properly and that the unhealthy kidney is not causing adverse effects. In severe cases MCDK can lead to neonatal fatality (in bilateral cases), however in unilateral cases the prognosis might be better (it would be dependent on associated anomalies).
Conservative treatment involves the long term use of laxatives and enemas, and has limited success. Dietary changes in order to control the disease are ineffective and high fiber diets often worsen the symptoms in children. As a last resort, surgical treatment (internal sphincter myectomy or colon resection) is used. In extreme cases, the only effective cure is a complete transplant of the affected parts.
The outcome of this disease is dependent on the severity of the cardiac defects. Approximately 1 in 3 children with this diagnosis require shunting for the hydrocephaly that is often a consequence. Some children require extra assistance or therapy for delayed psychomotor and speech development, including hypotonia.
Through multiple advancements within the medical field, care-givers have been able to stray away from utilizing bilateral adrenalectomy as the treatment for Cushing's disease. This has decreased the risk of patients presenting with Nelson's syndrome. Alternative treatments for Nelson's syndrome have been discovered. The most utilized technique for Nelson's syndrome has been transsphenoidal surgery. In addition, pharmacotherapy, radiotherapy, and radiosurgery have been utilized accompanying a surgical procedure. Pharmalogical drugs can also be given accompanying a transsphenoidal surgery including the following: pasireotide, temozolomide and octreotide. Within rats/mice, rosiglitazone has been an effective measure, however this has not been discovered in humans yet.
If suspected antenatally, a consultation with a paediatric surgeon/ paediatric urologist maybe indicated to evaluate the risk and consider treatment options.
Treatment is by endoscopic valve ablation. Fetal surgery is a high risk procedure reserved for cases with severe oligohydramnios, to try to limit the associated lung underdevelopment, or pulmonary hypoplasia, that is seen at birth in these patients. The risks of fetal surgery are significant and include limb entrapment, abdominal injury, and fetal or maternal death. Specific procedures for "in utero" intervention include infusions of amniotic fluid, serial bladder aspiration, and creating a connection between the amniotic sac and the fetal bladder, or vesicoamniotic shunt.
There are three specific endoscopic treatments of posterior urethral valves:
- Vesicostomy followed by valve ablation - a stoma, or hole, is made in the urinary bladder, also known as "low diversion", after which the valve is ablated and the stoma is closed.
- Pyelostomy followed by valve ablation - stoma is made in the pelvis of the kidney as a slightly "high diversion", after which the valve is ablated and the stoma is closed
- Primary (transurethral) valve ablation - the valve is removed through the urethra without creation of a stoma
The standard treatment is primary (transurethral) ablation of the valves. Urinary diversion is used in selected cases, and its benefit is disputed.
Following surgery, the follow-up in patients with posterior urethral valve syndrome is long term, and often requires a multidisciplinary effort between paediatric surgeons/ paediatric urologists, pulmonologists, neonatologists, radiologists and the family of the patient. Care must be taken to promote proper bladder compliance and renal function, as well as to monitor and treat the significant lung underdevelopment that can accompany the disorder. Definitive treatment may also be indicated for the vesico-ureteral reflux.
Treatment remains largely supportive. The behavioral disturbances of MPS-III respond poorly to medication. If an early diagnosis is made, bone marrow replacement may be beneficial. Although the missing enzyme can be manufactured and given intravenously, it cannot penetrate the blood–brain barrier and therefore cannot treat the neurological manifestations of the disease.
Along with many other lysosomal storage diseases, MPS-III exists as a model of a monogenetic disease involving the central nervous system.
Several promising therapies are in development. Gene therapy in particular is under Phase I/II clinical trial in France since October 2011 under the leadership of Paris-based biotechnology company Lysogene. Other potential therapies include chemical modification of deficient enzymes to allow them to penetrate the blood–brain barrier, stabilisation of abnormal but active enzyme to prevent its degradation, and implantation of stem cells strongly expressing the missing enzyme. For any future treatment to be successful, it must be administered as early as possible. Currently MPS-III is mainly diagnosed clinically, by which stage it is probably too late for any treatment to be very effective. Neonatal screening programs would provide the earliest possible diagnosis.
The flavonoid genistein decreases the pathological accumulation of glycosaminoglycans in Sanfilippo syndrome. "In vitro", animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by an adequate dose of genistein. Despite its reported beneficial properties, genistein also has toxic side effects.
Several support and research groups have been established to speed the development of new treatments for Sanfilippo syndrome.
Unilateral primary hyperaldosteronism due to an adrenocortical adenoma or adrenocarcinoma can be potentially cured surgically. Unilateral adrenalectomy is the treatment of choice for unilateral PHA. Potential complications include hemorrhage and postoperative hypokalemia. With complete removal of the tumor, prognosis is excellent.
Bilateral primary hyperaldosteronism due to hyperplasia of the zona glomerulosa or metastasized adrenocortical adenocarcinoma should be treated medically. Medical therapy is aimed at normalizing blood pressure and plasma potassium concentration. Mineralocorticoid receptor blockers, such as spironolactone, coupled with potassium supplementation are the most commonly used treatments. Specific therapy for treating high blood pressure (e.g., amlodipine), should be added if necessary.
Endoscopic injection involves applying a gel around the ureteral opening to create a valve function and stop urine from flowing back up the ureter. The gel consists of two types of sugar-based molecules called dextranomer and hyaluronic acid. Trade names for this combination include Deflux and Zuidex. Both constituents are well-known from previous uses in medicine. They are also biocompatible, which means that they do not cause significant reactions within the body. In fact, hyaluronic acid is produced and found naturally within the body.
Medical treatment entails low dose antibiotic prophylaxis until resolution of VUR occurs. Antibiotics are administered nightly at half the normal therapeutic dose. The specific antibiotics used differ with the age of the patient and include:
- Amoxicillin or ampicillin – infants younger than 6 weeks
- Trimethoprim-sulfamethoxazole (co-trimoxazole) – 6 weeks to 2 months
After 2 months the following antibiotics are suitable:
- Nitrofurantoin {5–7 mg/kg/24hrs}
- Nalidixic acid
- Bactrim
- Trimethoprim
- Cephalosporins
Urine cultures are performed 3 monthly to exclude breakthrough infection. Annual radiological investigations are likewise indicated. Good perineal hygiene, and timed and double voiding are also important aspects of medical treatment. Bladder dysfunction is treated with the administration of anticholinergics.
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
Common treatments for Nelson's syndrome include radiation or surgical procedure. Radiation allows for the limitation of the growth of the pituitary gland and the adenomas. If the adenomas start to affect the surrounding structures of the brain, then a micro-surgical technique can be adapted in order to remove the adenomas in a transsphenoidal (bone at base of the skull) process. Death may result with development of a locally aggressive pituitary tumor. However, does not commonly occur with pituitary diseases. In the rare case, ACTH-secreting tumors can become malignant. Morbidity from the disease can occur due to pituitary tissue compression or replacement, and compression of structures that surround the pituitary fossa. The tumor can also compress the optic apparatus, disturb cerebrospinal fluid flow, meningitis, and testicular enlargement in rare cases.
While no cure for MDS is available yet, many complications associated with this condition can be treated, and a great deal can be done to support or compensate for functional disabilities. Because of the diversity of the symptoms, it can be necessary to see a number of different specialists and undergo various examinations, including:
- Developmental evaluation
- Cardiologists evaluation
- Otolaryngology
- Treatment of seizures
- Urologic evaluation
- Genetic counseling-balanced chromosomal translocation should be excluded in a parents with an affected child are planning another pregnancy, so parents with affected children should visit a genetic counselor.
Treatment differs depending on the cause. Each cause has a different treatment, and may involve either medical treatment, surgery, or therapy. If serious damage has already been done, then the focus of treatment is upon avoidance of vestibular suppressants and ototoxins. It is recommended that you tell your physicians to avoid drugs that end in mycin ( Azithromycin, Erythromycin ) because of possible reactions which could lead to setbacks. Vestibular rehabilitation is important. Your physician will try to keep the administering of drugs to a minimum.
Treatment, depending on cause, may require prompt drainage of the bladder via catheterization, medical instrumentation, surgery (e.g., endoscopy, lithotripsy), hormonal therapy, or a combination of these modalities.
Treatment of the obstruction at the level of the ureter:
Hand-foot-genital syndrome (HFGS) is characterized by limb malformations and urogenital defects. Mild bilateral shortening of the thumbs and great toes, caused primarily by shortening of the distal phalanx and/or the first metacarpal or metatarsal, is the most common limb malformation and results in impaired dexterity or apposition of the thumbs. Urogenital abnormalities include abnormalities of the ureters and urethra and various degrees of incomplete Müllerian fusion in females and hypospadias of variable severity with or without chordee in males. Vesicoureteral reflux, recurrent urinary tract infections, and chronic pyelonephritis are common; fertility is normal.
Genitopatellar syndrome is a rare disorder with characteristic craniofacial features, congenital flexion contractures of the lower limbs, absent or abnormal patellae, urogenital anomalies, and severe psychomotor retardation.
In 2012, it was shown that mutations in the gene KAT6B cause the syndrome.
Diagnosis is based on physical examination including radiographs of the hands and feet and imaging studies of the kidneys, bladder, and female reproductive tract. HOXA13 is the only gene known to be associated with HFGS. Approximately 60% of mutations are polyalanine expansions. Molecular genetic testing is clinically available.
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
Most individuals with this condition do not survive beyond childhood. Individuals with MDS usually die in infancy and therefore do not live to the age where they can reproduce and transmit MDS to their offspring.