Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatments using intravenous magnesium sulfate have shown to reduce the symptoms of akinetic mutism. In one case, a 59-year-old woman was administered intravenous magnesium sulfate in an attempt to resolve her akinetic mutism. The patient was given 500 mg of magnesium every eight hours, and improvement was seen after 24 hours. She became more verbal and attentive, and treatment was increased to 1000 mg every eight hours as conditions continued to improve.
Symptoms of akinetic mutism suggest a possible presynaptic deficit in the nigrostriatal pathway, which transmits dopamine. Some patients with akinetic mutism have shown to improve with levodopa or dopamine agonist therapy, or by repleting dopamine in the motivational circuit with stimulants, antidepressants, or agonists such as bromocriptine or amantadine.
Other treatments include amantadine, carbidopa-levodopa, donepezil, memantine, and oral magnesium oxide.
Treatment of Foix–Chavany–Marie syndrome depends on the onset of symptoms and involves a multidisciplinary approach. Drugs are used in neurological recovery depending on the etiological classification of FCMS. FCMS caused by epilepsy, specifically resulting in the development of lesions in the bilateral and subcortical regions of the brain can be treated using antiepileptic drugs to reverse abnormal EEG changes and induce complete neurological recovery. In addition, a hemispherectomy can be performed to reverse neurological deficits and control the seizures. This procedure can result in a complete recovery from epileptic seizures. Physical therapy is also used to manage symptoms and improve quality of life. Classical FCMS resulting in the decline of ones ability to speak and swallow can be treated using neuromuscular electrical stimulation and traditional dysphagia therapy. Speech therapy further targeting dysphagia can strengthen oral musculature using modified feeding techniques and postures. Therapeutic feedings include practicing oral and lingual movements using ice chips. In addition, different procedures can be performed by a neurosurgeon to alleviate some symptoms.
In terms of treatment for frontal lobe disorder, general supportive care is given, also some level of supervision could be needed. The prognosis will depend on the cause of the disorder, of course. A possible complication is that individuals with severe injuries may be disabled, such that, a caregiver may be unrecognizable to the person.
Another aspect of treatment of frontal lobe disorder is speech therapy. This type of therapy might help individuals with symptoms that are associated with aphasia and dysarthria.
Most current treatments for aboulia are pharmacological, including the use of antidepressants. However, antidepressant treatment is not always successful and this has opened the door to alternative methods of treatment. The first step to successful treatment of aboulia, or any other DDM, is a preliminary evaluation of the patient's general medical condition and fixing the problems that can be fixed easily. This may mean controlling seizures or headaches, arranging physical or cognitive rehabilitation for cognitive and sensorimotor loss, or ensuring optimal hearing, vision, and speech. These elementary steps also increase motivation because improved physical status may enhance functional capacity, drive, and energy and thereby increase the patient's expectation that initiative and effort will be successful.
There are 5 steps to pharmacological treatment:
1. Optimize medical status.
2. Diagnose and treat other conditions more specifically associated with diminished motivation (e.g., apathetic hyperthyroidism, Parkinson's disease).
3. Eliminate or reduce doses of psychotropics and other agents that aggravate motivational loss (e.g., SSRIs, dopamine antagonists).
4. Treat depression efficaciously when both DDM and depression are present.
5. Increase motivation through use of stimulants, dopamine agonists, or other agents such as cholinesterase inhibitors.
Some practitioners believe there would be evidence indicating anxiolytics to be helpful in treating children and adults with selective mutism, to decrease anxiety levels and thereby speed the process of therapy. Use of medication may end after nine to twelve months, once the person has learned skills to cope with anxiety and has become more comfortable in social situations. Medication is more often used for older children, teenagers, and adults whose anxiety has led to depression and other problems.
Medication, when used, should never be considered the entire treatment for a person with selective mutism. While on medication, the person should be in therapy to help them learn how to handle anxiety and prepare them for life without medication.
Antidepressants have been used in addition to self-modeling and mystery motivation to aid in the learning process.
The U.S. Food and Drug Administration (FDA) has not approved any drug for the direct treatment of stuttering. However, the effectiveness of pharmacological agents, such as benzodiazepines, anticonvulsants, antidepressants, antipsychotic and antihypertensive medications, and dopamine antagonists in the treatment of stuttering has been evaluated in studies involving both adults and children.
A comprehensive review of pharmacological treatments of stuttering in 2006 concluded that few of the drug trials were methodologically sound. Of those that were, only one, not unflawed study, showed a reduction in the frequency of stuttering to less than 5% of words spoken. In addition, potentially serious side effects of pharmacological treatments were noted, such as weight gain, sexual dysfunctions and the potential for blood pressure increases. There is one new drug studied especially for stuttering named pagoclone, which was found to be well-tolerated "with only minor side-effects of headache and fatigue reported in a minority of those treated".
Altered auditory feedback, so that people who stutter hear their voice differently, has been used for over 50 years in the treatment of stuttering. Altered auditory feedback effect can be produced by speaking in chorus with another person, by blocking out the person who stutters' voice while talking (masking), by delaying slightly the voice of the person who stutters (delayed auditory feedback) or by altering the frequency of the feedback (frequency altered feedback). Studies of these techniques have had mixed results, with some people who stutter showing substantial reductions in stuttering, while others improved only slightly or not at all. In a 2006 review of the efficacy of stuttering treatments, none of the studies on altered auditory feedback met the criteria for experimental quality, such as the presence of control groups.
Spacing is important to integrate, especially with self-modeling. Repeated and spaced out use of interventions is shown to be the most helpful long-term for learning. Viewing videotapes of self-modeling should be shown over a spaced out period of time of approximately 6 weeks.
There is currently no definitive evidence that support altering the course of the recovery of minimally conscious state. There are currently multiple clinical trials underway investigating potential treatments.
In one case study, stimulation of thalamus using deep brain stimulation (DBS) led to some behavioral improvements. The patient was a 38-year-old male who had remained in minimally conscious state following a severe traumatic brain injury. He had been unresponsive to consistent command following or communication ability and had remained non-verbal over two years in inpatient rehabilitation. fMRI scans showed preservation of a large-scale, bi-hemispheric cerebral language network, which indicates that possibility for further recovery may exist. Positron emission tomography showed that the patient's global cerebral metabolism levels were markedly reduced. He had DBS electrodes implanted bilaterally within his central thalamus. More specifically, the DBS electrodes targeted the anterior intralaminar nuclei of thalamus and adjacent paralaminar regions of thalamic association nuclei. Both electrodes were positioned within the central lateral nucleus, the paralaminar regions of the median dorsalis, and the posterior-medial aspect of the centromedian/parafasicularis nucleus complex. This allowed maximum coverage of the thalamic bodies. A DBS stimulation was conducted such that the patient was exposed to various patterns of stimulation to help identify optimal behavioral responses. Approximately 140 days after the stimulation began, qualitative changes in behavior emerged. There were longer periods of eye opening and increased responses to command stimuli as well as higher scores on the JFK coma recovery scale (CRS). Functional object use and intelligible verbalization was also observed. The observed improvements in arousal level, motor control, and consistency of behavior could be a result of direct activation of frontal cortical and basal ganglia systems that were innervated by neurons within the thalamic association nuclei. These neurons act as a key communication relay and form a pathway between the brainstem arousal systems and frontal lobe regions. This pathway is crucial for many executive functions such as working memory, effort regulation, selective attention, and focus.
In another case study of a 50-year-old woman who had symptoms consistent with MCS, administration of zolpidem, a sedative hypnotic drug improved the patient's condition significantly. Without treatment, the patient showed signs of mutism, athetoid movements of the extremities, and complete dependence for all personal care. 45 minutes after 5 to 10 mg of zolpidem was administered, the patient ceased the athetoid movements, regained speaking ability, and was able to self-feed. The effect lasted 3–4 hours from which she returned to the former state. The effects were repeated on a daily basis. PET scans showed that after zolpidem was administered, there was a marked increase in blood flow to areas of the brain adjacent to or distant from damaged tissues. In this case, these areas were the ipsilateral cerebral hemispheres and the cerebellum. These areas are thought to have been inhibited by the site of injury through a GABA-mediated mechanism and the inhibition was modified by zolpidem which is a GABA agonist. The fact that zolpidem is a sedative drug that induces sleep in normal people but causes arousal in a MCS patient is paradoxical. The mechanisms to why this effect occurs is not entirely clear.
There is recent evidence that transcranial direct current stimulation (tDCS), a technique that supplies a small electric current in the brain with non-invasive electrodes, may improve the clinical state of patients with MCS. In one study with 10 patients with disorders of consciousness (7 in VS, 3 in MCS), tDCS was applied for 20 minutes every day for 10 days, and showed clinical improvement in all 3 patients who were in MCS, but not in those with VS. These results remained at 12-month follow-up. Two of the patients in MCS that had their brain insult less that 12 months recovered consciousness in the following months. One of these patients received a second round of tDCS treatment 4 months after his initial treatment, and showed further recovery and emerged into consciousness, with no change of clinical status between the two treatments. Moreover, in a sham-controlled, double-blind crossover study, the immediate effects of a single session of tDCS were shown to transiently improve the clinical status of 13 out of 30 patients with MCS, but not in those with VS
Initial treatment is aimed at providing symptomatic relief. Benzodiazepines are the first line of treatment, and high doses are often required. A test dose of intramuscular lorazepam will often result in marked improvement within half an hour. In France, zolpidem has also been used in diagnosis, and response may occur within the same time period. Ultimately the underlying cause needs to be treated.
Electroconvulsive therapy (ECT) is an effective treatment for catatonia. Antipsychotics should be used with care as they can worsen catatonia and are the cause of neuroleptic malignant syndrome, a dangerous condition that can mimic catatonia and requires immediate discontinuation of the antipsychotic.
Excessive glutamate activity is believed to be involved in catatonia; when first-line treatment options fail, NMDA antagonists such as amantadine or memantine are used. Amantadine may have an increased incidence of tolerance with prolonged use and can cause psychosis, due to its additional effects on the dopamine system. Memantine has a more targeted pharmacological profile for the glutamate system, reduced incidence of psychosis and may therefore be preferred for individuals who cannot tolerate amantadine. Topiramate is another treatment option for resistant catatonia; it produces its therapeutic effects by producing glutamate antagonism via modulation of AMPA receptors.
Immediate treatment of drug induced OGC can be achieved with intravenous antimuscarinic benzatropine or procyclidine; which usually are effective within 5 minutes, although may take as long as 30 minutes for full effect. Further doses of procyclidine may be needed after 20 minutes. Any causative new medication should be discontinued. Also can be treated with 25 mg diphenhydramine.
There is no known definitive cure for OMS. However, several drugs have proven to be effective in its treatment.
Some of medication used to treat the symptoms are:
- ACTH has shown improvements in symptoms but can result in an incomplete recovery with residual deficits.
- Corticosteroids (such as "prednisone" or "methylprednisolone") used at high dosages (500 mg - 2 g per day intravenously for a course of 3 to 5 days) can accelerate regression of symptoms. Subsequent very gradual tapering with pills generally follows. Most patients require high doses for months to years before tapering.
- Intravenous Immunoglobulins (IVIg) are often used with varying results.
- Several other immunosuppressive drugs, such as cyclophosphamide and azathioprine, may be helpful in some cases.
- Chemotherapy for neuroblastoma may be effective, although data is contradictory and unconvincing at this point in time.
- Rituximab has been used with encouraging results.
- Other medications are used to treat symptoms without influencing the nature of the disease (symptomatic treatment):
- Trazodone can be useful against irritability and sleep problems
- Additional treatment options include plasmapheresis for severe, steroid-unresponsive relapses.
The National Organization for Rare Disorders (NORD) recommends FLAIR therapy consisting of a three-agent protocol involving front-loaded high-dose ACTH, IVIg, and rituximab that was developed by the National Pediatric Myoclonus Center, and has the best-documented outcomes. Almost all patients (80-90%) show improvement with this treatment and the relapse rate appears to be about 20%.
A more detailed summary of current treatment options can be found at Treatment Options
The following medications should probably be avoided:
- Midazolam - Can cause irritability.
- Melatonin - Is known to stimulate the immune system.
- Also, see for more details
Foix-Chavany-Marie Syndrome (FCMS), also known as Bilateral Opercular Syndrome, is a neuropathological disorder characterized by paralysis of the facial, tongue, pharynx, and masticatory muscles of the mouth that aid in chewing. The disorder is primarily caused by thrombotic and embolic strokes, which cause a deficiency of oxygen in the brain. As a result, bilateral lesions may form in the junctions between the frontal lobe and temporal lobe, the parietal lobe and cortical lobe, or the subcortical region of the brain. FCMS may also arise from defects existing at birth that may be inherited or nonhereditary. Symptoms of FCMS can be present in a person of any age and it is diagnosed using automatic-voluntary dissociation assessment, psycholinguistic testing, neuropsychological testing, and brain scanning. Treatment for FCMS depends on the onset, as well as on the severity of symptoms, and it involves a multidisciplinary approach.
Frontal lobe disorder is an impairment of the frontal lobe that occurs due to disease or head trauma. The frontal lobe of the brain plays a key role in higher mental functions such as motivation, planning, social behaviour, and speech production. A frontal lobe syndrome can be caused by a range of conditions including head trauma, tumours, degenerative diseases, neurosurgery and cerebrovascular disease. Frontal lobe impairment can be detected by recognition of typical clinical signs, use of simple screening tests, and specialist neurological testing.
Intervention services will be guided by the strengths and needs determined by the speech and language evaluation. The areas of need may be addressed individually until each one is functional; alternatively, multiple needs may be addressed simultaneously through the intervention techniques. If possible, all interventions will be geared towards the goal of developing typical communicative interaction. To this end, interventions typically follow either a preventive, remedial, or compensatory model. The preventive service model is common as an early intervention technique, especially for children whose other disorders place them at a higher risk for developing later communication problems. This model works to lessen the probability or severity of the issues that could later emerge. The remedial model is used when an individual already has a speech or language impairment that he/she wishes to have corrected. Compensatory models would be used if a professional determines that it is best for the child to bypass the communication limitation; often, this relies on AAC.
Language intervention activities are used in some therapy sessions. In these exercises, an SLP or other trained professional will interact with a child by working with the child through play and other forms of interaction to talk to the child and model language use. The professional will make use of various stimuli, such as books, objects, or simple pictures to stimulate the emerging language. In these activities, the professional will model correct pronunciation, and will encourage the child to practice these skills. Articulation therapy may be used during play therapy as well, but involves modeling specific aspects of language—the production of sound. The specific sounds will be modeled for the child by the professional (often the SLP), and the specific processes involved in creating those sounds will be taught as well. For example, the professional might instruct the child in the placement of the tongue or lips in order to produce certain consonant sounds.
Technology is another avenue of intervention, and can help children whose physical conditions make communication difficult. The use of electronic communication systems allow nonspeaking people and people with severe physical disabilities to engage in the give and take of shared thought.
Attention strategies:
By consciously paying more attention to walking and rehearsing each step before actually making it, PD patients have shown to improve their gait. Sometimes, a companion walking alongside reminds the patient to concentrate on gait or they create a visual cue to step over by putting a foot in front of the person with PD over which the person must step. This causes the patient to focus their attention on the stepping action, thus making this a voluntary action and hence bypassing the faulty basal ganglia pathway (which is responsible for involuntary actions like walking). Avoidance of dual tasks that require motor attention or cognitive attention has also been shown to normalize gait in the PD patients.
Exercise:
Physical therapy and exercise have been shown to have positive effects on gait parameters in PD patients.
Physiotherapists may help improve gait by creating training programs to lengthen a patient's stride length, broaden the base of support, improve the heel-toe gait pattern, straighten out a patient's posture, and increase arm swing patterns.
Research has shown gait training combining an overhead harness with walking on a treadmill has shown to improve both walking speed and stride length. The harness assists the patient in maintaining an upright posture by eliminating the need to use a mobility aid, a practice which normally promotes a forward flexed posture. It is believed the activation of the central pattern generator leads to the improvement in gait pattern.
Improving trunk flexibility, along with strengthening of the core muscles and lower extremities has been associated with increased balance and an improvement in gait pattern. Aerobic exercises such as tandem bicycling and water aerobics are also crucial in improving strength and overall balance. Due to PD’s progressive nature it is important to sustain an exercise routine to maintain its benefits.
Strategies such as using a vertical walking pole can also help to improve upright postural alignment. The therapist may also use tiles or footprints on the ground to improve foot placement and widen the patient's base of support. Creative visualization of walking with a more normalized gait pattern, and mentally rehearsing the desired movement has also shown to be effective.
The patient should also be challenged by walking on a variety of surfaces such as tile, carpet, grass, or foamed surfaces will also benefit the individual’s progress towards normalizing their gait pattern.
While some speech problems, such as certain voice problems, require medical interventions, many speech problems can be alleviated through effective behavioral interventions and practice. In these cases, instruction in speech techniques or speaking strategies, coupled with regular practice, can help the individual to overcome his/her speaking difficulties. In other, more severe cases, the individual with speech problems may compensate with AAC devices.
Speech impairments can seriously limit the manner in which an individual interacts with others in work, school, social, and even home environments. Inability to correctly form speech sounds might create stress, embarrassment, and frustration in both the speaker and the listener. Over time, this could create aggressive responses on the part of the listener for being misunderstood, or out of embarrassment. Alternatively, it could generate an avoidance of social situations that create these stressful situations. Language impairments create similar difficulties in communicating with others, but may also include difficulties in understanding what others are trying to say (receptive language). Because of the pervasive nature of language impairments, communicating, reading, writing, and academic success may all be compromised in these students. Similar to individuals with speech impairments, individuals with language impairments may encounter long-term difficulties associated with work, school, social, and home environments.
Different therapies are offered to children with motor skills disorders to help them improve their motor effectiveness. Many children work with an occupational and physical therapist, as well as educational professionals. This helpful combination is beneficial to the child. Cognitive therapy, sensory integration therapy, and kinesthetic training are often favorable treatment for the child.
Management by rehabilitation professionals (physiatrists, physiotherapists, occupational therapists, speech therapists, and others) for problems with walking/movement, daily tasks, and speech problems is essential.
Physiotherapy can help to maintain the patient’s mobility and will help to prevent contractures. Instructing patients in gait training will help to improve their mobility and decrease their risk of falls. A physiotherapist may also prescribe mobility aids such as a cane or a walker to increase the patient’s safety. Other ways a physiotherapist can help to improve the patient’s safety are to teach them to move and transfer from sitting to standing slowly to decrease risk of falls and limit the effect of postural hypotension. Instruction in ankle pumping helps to return blood in the legs to the systemic circulation. To further control the postural hypotension, raising the head of the bed by 8 in (20.3 cm) while sleeping may be indicated as well as the use of elastic compression garments.
Speech and language therapists may assist in assessing, treating and supporting speech (dysarthria) and swallowing difficulties (dysphagia). Early intervention of swallowing difficulties is particularly useful to allow for discussion around tube feeding further in the disease progression.{doubtful - citation needed} At some point in the progression of the disease, fluid and food modification may be suggested. Speech changes mean that alternative communication may be needed, for example communication aids or word charts.
Social workers and occupational therapists can also help with coping with disability through the provision of equipment and home adaptations, services for caregivers and access to healthcare services, both for the person with MSA as well as family caregivers.
There is no general treatment for patients with a seizure disorder. Each treatment plan is specifically tailored to the individual patient based on their diagnosis and symptoms. Treatment options may include medical therapy, nerve stimulation, dietary therapy, or surgery, as appropriate. Clinical trials may also be a valuable treatment alternative.
Usually, anticonvulsants are given based on other symptoms and / or associated problems.
Because the areas of the cerebellum which determine increases and decreases in muscular tonus are close together, people experiencing atonic seizures are most likely experiencing myoclonic ones too, at some point. This may play a role in therapy and diagnostic.
The most widely used form of treatment is L-dopa in various forms. L-dopa is able to pass the blood–brain barrier as a prodrug and is decarboxylated in the brain to the neurotransmitter dopamine by the enzyme aromatic-L-amino-acid decarboxylase. In this way, L-DOPA can replace some of the deficit in dopamine seen in Parkinsonism. Due to feedback inhibition, L-dopa results in a reduction in the endogenous formation of L-dopa, and so eventually becomes counterproductive.
Effect on gait parameters:
The stride length and the kinematic parameters (swing velocity, peak velocity) related to the energy are Dopa-sensitive. Temporal parameters (stride and swing duration, stride duration variability), related to rhythm, are Dopa-resistant.
Effect on falls and freezing of gait:
Levodopa treatment decreases the frequency and the akinetic type of FOG, with a tendency
for shorter FOG episodes. Results indicate that this is primarily because L-dopa increases the threshold for FOG to occur but the fundamental pathophysiology for FOG did not change. It has also been shown that other dopamine agonists like ropinirole, pramipexole and pergolide that have a strong affinity to D2 receptors (as opposed to L-dopa which has a strong D1 receptor affinity) increase the frequency of FOGs.
Effects on postural sway:
Parkinson’s disease have abnormal postural sway in stance and treatment with levodopa increases postural sway abnormalities. During movement, it has been shown that early autonomic postural disturbances are only partially corrected while the later occurring postural corrections are not affected by dopamine. These results indicate that non-dopaminergic lesions play a role in postural imbalance in PD patients.
There is no known cure for MSA and management is primarily supportive.
Ongoing care from a neurologist specializing in "movement disorders" is recommended as the complex symptoms of MSA are often not familiar to less-specialized health care professionals.
One particularly serious problem, the drop in blood pressure upon standing up (with risk of fainting and thus injury from falling) often responds to fludrocortisone, a synthetic mineralocorticoid. Another common drug treatment is midodrine (an alpha-agonist). Non-drug treatments include "head-up tilt" (elevating the head of the whole bed by about 10 degrees), salt tablets or increasing salt in the diet, generous intake of fluids, and pressure (elastic) stockings. Avoidance of triggers of low blood pressure (such as hot weather, alcohol, and dehydration) are crucial.
Hospice/homecare services can be very useful as disability progresses.
Levodopa (L-Dopa), a drug used in the treatment of Parkinson's disease, improves parkinsonian symptoms in a small percentage of MSA patients. A recent trial reported that only 1.5% of MSA patients experienced a less than 50% improvement when taking levodopa, and even this was a transient effect lasting less than one year. Poor response to L-Dopa has been suggested as a possible element in the differential diagnosis of MSA from Parkinson's disease.
A November, 2008 study conducted in Europe failed to find an effect for the drug riluzole in treating MSA or PSP.
Treatment consists of high-dose lorazepam or in some cases ECT. The response to the treatment is usually good, especially if detected early
Immunosuppressive therapies, encompassing corticosteroids, azathioprine, methotrexate and more recently, rituximab, are the mainstay of therapy. Other treatments include PE, IVIG, and thymectomy. Patients reportedly exhibited a heterogenous response to immunomodulation.
Antiepileptics can be used for symptomatic relief of peripheral nerve hyperexcitability. Indeed, some patients have exhibited a spontaneous remission of symptoms.