Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
As of April 2020, there is no specific treatment for COVID-19. Research is, however, ongoing. For symptoms, some medical professionals recommend paracetamol (acetaminophen) over ibuprofen for first-line use. The WHO does not oppose the use of non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen for symptoms, and the FDA says currently there is no evidence that NSAIDs worsen COVID-19 symptoms.
While theoretical concerns have been raised about ACE inhibitors and angiotensin receptor blockers, as of 19 March 2020, these are not sufficient to justify stopping these medications. Steroids, such as methylprednisolone, are not recommended unless the disease is complicated by acute respiratory distress syndrome.
Medications to prevent blood clotting have been suggested for treatment, and anticoagulant therapy with low molecular weight heparin appears to be associated with better outcomes in severe COVID‐19 showing signs of coagulopathy (elevated D-dimer).
Research into potential treatments started in January 2020, and several antiviral drugs are in clinical trials. Remdesivir appears to be the most promising. Although new medications may take until 2021 to develop, several of the medications being tested are already approved for other uses or are already in advanced testing. Antiviral medication may be tried in people with severe disease. The WHO recommended volunteers take part in trials of the effectiveness and safety of potential treatments.
The FDA has granted temporary authorisation to convalescent plasma as an experimental treatment in cases where the person's life is seriously or immediately threatened. It has not undergone the clinical studies needed to show it is safe and effective for the disease.
Antibiotics are given to treat any bacterial infection present. Cough suppressants are used if the cough is not productive. NSAIDs are often given to reduce fever and upper respiratory inflammation. Prevention is by vaccinating for canine adenovirus, distemper, parainfluenza, and "Bordetella". In kennels, the best prevention is to keep all the cages disinfected. In some cases, such as "doggie daycares" or nontraditional playcare-type boarding environments, it is usually not a cleaning or disinfecting issue, but rather an airborne issue, as the dogs are in contact with each other's saliva and breath. Although most kennels require proof of vaccination, the vaccination is not a fail-safe preventative. Just like human influenza, even after receiving the vaccination, a dog can still contract mutated strains or less severe cases.
To increase their effectiveness, vaccines should be administered as soon as possible after a dog enters a high-risk area, such as a shelter. 10 to 14 days are required for partial immunity to develop. Administration of B. bronchiseptica and canine-parainfluenza vaccines may then be continued routinely, especially during outbreaks of kennel cough. There are several methods of administration, including parenteral and intranasal. However, the intranasal method has been recommended when exposure is imminent, due to a more rapid and localized protection. Several intranasal vaccines have been developed that contain canine adenovirus in addition to B bronchiseptica and canine-parainfluenza virus antigens. Studies have thus far not been able to determine which formula of vaccination is the most efficient. Adverse effects of vaccinations are mild, but the most common effect observed up to 30 days after administration is nasal discharge. Vaccinations are not always effective. In one study it was found that 43.3% of all dogs in the study population with respiratory disease had in fact been vaccinated.
Ribavirin is one medication which has shown good potential for the treatment of HPIV-3 given recent in-vitro tests (in-vivo tests show mixed results). Ribavirin is a broadscale anti-viral and is currently being administered to those who are severely immuno-compromised, despite the lack of conclusive evidence for its use. Protein inhibitors and novel forms of medication have also been proposed to relieve the symptoms of infection.
Furthermore, antibiotics may be used if a secondary bacterial infection develops. Corticosteroid treatment and nebulizers are also a first line choice against croup if breathing difficulties ensue.
Significant disease develops in fewer than 5% of those infected and typically occurs in those with a weakened immune system. Mild asymptomatic cases often do not require any treatment, and the symptoms will go away within a few months. Those with severe symptoms may benefit from anti-fungal therapy, which usually requires 3–6 months of treatment. There is a lack of prospective studies that examine optimal anti-fungal therapy for coccidioidomycosis.
On the whole, oral fluconazole and intravenous amphotericin B are used in progressive or disseminated disease, or in immunocompromised individuals. Amphotericin B used to be the only available treatment, although now there are alternatives, including itraconazole or ketoconazole may be used for milder disease. Fluconazole is the preferred medication for coccidioidal meningitis, due to its penetration into CSF. Intrathecal or intraventricular amphotericin B therapy is used if infection persists after fluconazole treatment. Itraconazole is used for cases that involve treatment of infected person's bones and joints. The antifungal medications posaconazole and voriconazole have also been used to treat coccidioidomycosis. Because the symptoms of valley fever are similar to the common flu and other respiratory diseases, it is important for public health professionals to be aware of the rise of valley fever and the specifics of diagnosis. Greyhound dogs often get valley fever as well, and their treatment regimen involves 6–12 months of Ketoconazole, to be taken with food.
Conventional "amphotericin B desoxycholate" (AmB: used since the 1950s as a primary agent) is known to be associated with increased drug-induced Nephrotoxicity (Renal toxicity) impairing Renal function. Other formulations have been developed such as lipid soluble formulations to mitigate such side-effects as direct proximal and distal tubular cytotoxicity. These include liposomal amphotericin B, "amphotericin B lipid complex" such as Abelcet (brand) "amphotericin B phospholipid complex" also as "AmBisome Intravenous", or "Amphotec Intravenous" (Generic; Amphotericin B Cholesteryl Sul) and, "amphotericin B colloidal dispersion", all shown to exhibit a decrease in nephrotoxicity. The later was not as effective in one study as "amphotericin B desoxycholate" which had a 50% murine morbidity rate versus zero for the AmB colloidal dispersion.
The cost of AmB deoxycholate in 2015, for a patient of at 1 mg/kg/day dosage, was approximately $63.80, compared to 5 mg/kg/day of liposomal AmB at $1318.80. This may be a concern in resource-limited settings.
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
The antibiotics erythromycin, clarithromycin, or azithromycin are typically the recommended treatment. Newer macrolides are frequently recommended due to lower rates of side effects. Trimethoprim-sulfamethoxazole (TMP/SMX) may be used in those with allergies to first-line agents or in infants who have a risk of pyloric stenosis from macrolides.
A reasonable guideline is to treat people age >1 year within 3 weeks of cough onset and infants age <1 year and pregnant women within 6 weeks of cough onset. If the person is diagnosed late, antibiotics will not alter the course of the illness, and even without antibiotics, they should no longer be spreading pertussis. Antibiotics when used early decrease the duration of infectiousness, and thus prevent spread. Short-term antibiotics (azithromycin for 3–5 days) are as effective as long-term treatment (erythromycin 10–14 days) in eliminating "B. pertussis" with fewer and less severe side effects.
People with pertussis are infectious from the beginning of the catarrhal stage (a runny nose, sneezing, low-grade fever, symptoms of the common cold) through the third week after the onset of paroxysms (multiple, rapid coughs) or until 5 days after the start of effective antimicrobial treatment.
Effective treatments of the cough associated with this condition have not been developed.
Pneumonic plague is a very aggressive infection requiring early treatment. Antibiotics must be given within 24 hours of first symptoms to reduce the risk of death. Streptomycin, gentamicin, tetracyclines and chloramphenicol are all effective against pneumonic plague.
Antibiotic treatment for seven days will protect people who have had direct, close contact with infected patients. Wearing a close-fitting surgical mask also protects against infection.
The mortality rate from untreated pneumonic plague approaches 100%.
The two classes of antiviral drugs used against influenza are neuraminidase inhibitors (oseltamivir and zanamivir) and M2 protein inhibitors (adamantane derivatives).
Treatments that may help with symptoms include simple pain medication and medications for fevers such as ibuprofen and acetaminophen (paracetamol). It, however, is not clear if acetaminophen helps with symptoms. It is not known if over the counter cough medications are effective for treating an acute cough. Cough medicines are not recommended for use in children due to a lack of evidence supporting effectiveness and the potential for harm. In 2009, Canada restricted the use of over-the-counter cough and cold medication in children six years and under due to concerns regarding risks and unproven benefits. The misuse of dextromethorphan (an over-the-counter cough medicine) has led to its ban in a number of countries. Intranasal corticosteroids have not been found to be useful.
In adults short term use of nasal decongestants may have a small benefit. Antihistamines may improve symptoms in the first day or two; however, there is no longer-term benefit and they have adverse effects such as drowsiness. Other decongestants such as pseudoephedrine appear effective in adults. Ipratropium nasal spray may reduce the symptoms of a runny nose but has little effect on stuffiness. The safety and effectiveness of nasal decongestant use in children is unclear.
Due to lack of studies, it is not known whether increased fluid intake improves symptoms or shortens respiratory illness, and there is a similar lack of data for the use of heated humidified air. One study has found chest vapor rub to provide some relief of nocturnal cough, congestion, and sleep difficulty.
Overall the benefits of neuraminidase inhibitors in those who are otherwise healthy do not appear to be greater than the risks. There does not appear to be any benefit in those with other health problems. In those believed to have the flu, they decreased the length of time symptoms were present by slightly less than a day but did not appear to affect the risk of complications such as needing hospitalization or pneumonia. Previous to 2013 the benefits were unclear as the manufacturer (Roche) refused to release trial data for independent analysis. Increasingly prevalent resistance to neuraminidase inhibitors has led to researchers to seek alternative antiviral drugs with different mechanisms of action.
The primary method of prevention for pertussis is vaccination. Evidence is insufficient to determine the effectiveness of antibiotics in those who have been exposed, but are without symptoms. Preventive antibiotics, however, are still frequently used in those who have been exposed and are at high risk of severe disease (such as infants).
No medications or herbal remedies have been conclusively demonstrated to shorten the duration of infection. Treatment thus comprises symptomatic relief. Getting plenty of rest, drinking fluids to maintain hydration, and gargling with warm salt water are reasonable conservative measures. Much of the benefit from treatment is, however, attributed to the placebo effect.
Treatment is primarily supportive in nature. Early supportive care with rehydration and symptomatic treatment improves survival. Rehydration may be via the oral or by intravenous route. These measures may include management of pain, nausea, fever and anxiety. The World Health Organization recommends avoiding the use of aspirin or ibuprofen for pain due to the bleeding risk associated with use of these medications.
Blood products such as packed red blood cells, platelets or fresh frozen plasma may also be used. Other regulators of coagulation have also been tried including heparin in an effort to prevent disseminated intravascular coagulation and clotting factors to decrease bleeding. Antimalarial medications and antibiotics are often used before the diagnosis is confirmed, though there is no evidence to suggest such treatment helps. A number of experimental treatments are being studied.
If hospital care is not possible, the World Health Organization has guidelines for care at home that have been relatively successful. In such situations, recommendations include using towels soaked in bleach solutions when moving infected people or bodies and applying bleach on stains. It is also recommended that the caregivers wash hands with bleach solutions and cover their mouth and nose with a cloth.
No specific treatment is currently approved. The Food and Drug Administration (FDA) advises people to be careful of advertisements making unverified or fraudulent claims of benefits supposedly gained from various anti-Ebola products.
Silicosis is a permanent disease with no cure. Treatment options currently available focus on alleviating the symptoms and preventing any further progress of the condition. These include:
- Stopping further exposure to airborne silica, silica dust and other lung irritants, including tobacco smoking.
- Cough suppressants.
- Antibiotics for bacterial lung infection.
- TB prophylaxis for those with positive tuberculin skin test or IGRA blood test.
- Prolonged anti-tuberculosis (multi-drug regimen) for those with active TB.
- Chest physiotherapy to help the bronchial drainage of mucus.
- Oxygen administration to treat hypoxemia, if present.
- Bronchodilators to facilitate breathing.
- Lung transplantation to replace the damaged lung tissue is the most effective treatment, but is associated with severe risks of its own.
- For acute silicosis, bronchoalveolar lavage may alleviate symptoms, but does not decrease overall mortality.
Experimental treatments include:
- Inhalation of powdered aluminium, d-penicillamine and polyvinyl pyridine-N-oxide.
- Corticosteroid therapy.
- Chinese Herbal Kombucha
- The herbal extract tetrandrine may slow progression of silicosis.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
Despite decades of research, no vaccines currently exist.
Recombinant technology has however been used to target the formation of vaccines for HPIV-1, -2 and -3 and has taken the form of several live-attenuated intranasal vaccines. Two vaccines in particular were found to be immunogenic and well tolerated against HPIV-3 in phase I trials. HPIV-1 and -2 vaccine candidates remain less advanced.
Vaccine techniques which have been used against HPIVs are not limited to intranasal forms, but also viruses attenuated by cold passage, host range attenuation, chimeric construct vaccines and also introducing mutations with the help of reverse genetics to achieve attenuation.
Maternal antibodies may offer some degree of protection against HPIVs during the early stages of life via the colostrum in breast milk.
An airborne disease is any disease that is caused by pathogens that can be transmitted through the air. Such diseases include many of considerable importance both in human and veterinary medicine. The relevant pathogens may be viruses, bacteria, or fungi, and they may be spread through breathing, talking, coughing, sneezing, raising of dust, spraying of liquids, toilet flushing or any activities which generates aerosol particles or droplets. Human airborne diseases do not include conditions caused by air pollution such as volatile organic compounds (VOCs), gasses and any airborne particles, though their study and prevention may help inform the science of airborne disease transmission.
There is no cure for berylliosis; the goals of treatment are to reduce symptoms and slow the progression of disease.
Although the evidence that stopping exposure to beryllium decreases progression of the disease, it is still considered to be an accepted approach to treatment in any stage of disease.
People with early stages of disease, without lung function abnormalities or clinical symptoms, are periodically monitored with physical exams, pulmonary function testing and radiography.
Once clinical symptoms or significant abnormalities in pulmonary function testing appear, treatments include oxygen and oral corticosteroids and whatever supportive therapy is required.
There is no specific treatment for measles. Most people with uncomplicated measles will recover with rest and supportive treatment.
Patients who become sicker may be developing medical complications. Some people will develop pneumonia as a consequence of infection with the measles virus. Other complications include ear infections, bronchitis (either viral bronchitis or secondary bacterial bronchitis), and brain inflammation. Brain inflammation from measles has a mortality rate of 15%. While there is no specific treatment for brain inflammation from measles, antibiotics are required for bacterial pneumonia, sinusitis, and bronchitis that can follow measles.
All other treatment addresses symptoms, with ibuprofen or paracetamol to reduce fever and pain and, if required, a fast-acting medication to dilate the airways for cough. As for aspirin, some research has suggested a correlation between children who take aspirin and the development of Reye syndrome. Some research has shown aspirin may not be the only medication associated with Reye, and even antiemetics have been implicated. The link between aspirin use in children and Reye syndrome development is weak at best, if not actually nonexistent. Nevertheless, most health authorities still caution against the use of aspirin for any fevers in children under 16.
The use of vitamin A during treatment is recommended by the World Health Organization to decrease the risk of blindness. A systematic review of trials into its use found no significant reduction in overall mortality, but it did reduce mortality in children aged under two years.
It is unclear if zinc supplementation in children with measles affects outcomes.
Prevention is through use of Stock coryza-free birds. In other areas culling of the whole flock is a good means of the disease control. Bacterin also is used at a dose of two to reduce brutality of the disease. Precise exposure has also has been used but it should be done with care. Vaccination of the chicks is done in areas with high disease occurrence. Treatment is done by using antibiotics such as erythromycin, Dihydrostreptomycin, Streptomycin sulphonamides, tylosin and Flouroquinolones .