Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is currently no cure for the disease but treatments to help the symptoms are available.
Treatment is palliative, not curative (as of 2009).
Treatment options for lower limb weakness such as foot drop can be through the use of Ankle Foot Orthoses (AFOs) which can be designed or selected by an Orthotist based upon clinical need of the individual. Sometimes tuning of rigid AFOs can enhance knee stability.
There is no known cure to BVVL however a Dutch group have reported the first promising attempt at treatment of the disorder with high doses of riboflavin. This Riboflavin protocol seems to be beneficial in almost all cases. Specialist medical advice is of course essential to ensure the protocol is understood and followed correctly.
Patients will almost certainly require additional symptomatic treatment and supportive care. This must be specifically customized to the needs of the individual but could include mobility aids, hearing aids or cochlear implants, vision aids, gastrostomy feeding and assisted ventilation, while steroids may or may not help patients.
The first report of BVVL syndrome in Japanese literature was of a woman that had BVVL and showed improvement after such treatments. The patient was a sixty-year-old woman who had symptoms such as sensorineural deafness, weakness, and atrophy since she was 15 years old. Around the age of 49 the patient was officially diagnosed with BVVL, incubated, and then attached to a respirator to improve her CO2 narcosis. After the treatments, the patient still required respiratory assistance during sleep; however, the patient no longer needed assistance by a respirator during the daytime.
There is no known cure to DSMA1, and care is primarily supportive. Patients require respiratory support which may include non-invasive ventilation or tracheal intubation. The child may also undergo additional immunisations and offered antibiotics to prevent respiratory infections. Maintaining a healthy weight is also important. Patients are at risk of undernutrition and weight loss because of the increased energy spent for breathing. Physical and occupational therapy for the child can be very effective in maintaining muscle strength.
There is no published practice standard for the care in DSMA1, even though the Spinal Muscular Atrophy Standard of Care Committee has been trying to come to a consensus on the care standards for DSMA1 patients. The discrepancies in the practitioners’ knowledge, family resources, and differences in patient’s culture and/or residency have played a part in the outcome of the patient.
Currently there is no cure for myotubular or centronuclear myopathies. Treatment often focuses on trying to maximize functional abilities and minimize medical complications, and involvement by physicians specializing in Physical Medicine and Rehabilitation, and by physical therapists and occupational therapists.
Medical management generally involves efforts to prevent pulmonary complications, since lung infections can be fatal in patients lacking the muscle strength necessary to clear secretions via coughing. Medical devices to assist with coughing help patients maintain clear airways, avoiding mucous plugs and avoiding the need for tracheostomy tubes.
Monitoring for scoliosis is also important, since weakness of the trunk muscles can lead to deviations in spinal alignment, with resultant compromise of respiratory function. Many patients with congenital myopathies may eventually require surgical treatment of scoliosis.
In terms of the management of spinal and bulbar muscular atrophy, no cure is known and treatment is supportive. Rehabilitation to slow muscle weakness can prove positive, though the prognosis indicates some individuals will require the use of a wheelchair in later stages of life.
Surgery may achieve correction of the spine, and early surgical intervention should be done in cases where prolonged survival is expected. Preferred nonsurgical treatment occurs due to the high rate of repeated dislocation of the hip.
Congenital dSMA has a relatively stable disease course, with disability mainly attributed to increased contractures rather than loss of muscle strength. Individuals frequently use crutches, knee, ankle, and/or foot orthoses, or wheelchairs. Orthopaedic surgery can be an option for some patients with severely impaired movement. Physical therapy and occupational therapy can help prevent further contractures from occurring, though they do not reverse the effects of preexisting ones. Some literature suggests the use of electrical stimulation or botulinum toxin to halt the progression of contractures.
Because lack of sialic acid appears to be part of the pathology of IBM caused by GNE mutations, clinical trials with sialic acid supplements, and with a precursor of sialic acid, N-Acetylmannosamine, have been conducted, and as of 2016 further trials were planned.
In terms of a cure there is currently none available, however for the disease to manifest itself, it requires mutant gene expression. Manipulating the use of protein homoestasis regulators can be therapuetic agents, or a treatment to try and correct an altered function that makes up the pathology is one current idea put forth by Bushart, et al. There is some evidence that for SCA1 and two other polyQ disorders that the pathology can be reversed after the disease is underway. There is no effective treatments that could alter the progression of this disease, therefore care is given, like occupational and physical therapy for gait dysfunction and speech therapy.
Nusinersen (trade name: Spinraza) is the only approved drug to treat spinal muscular atrophy. It is a 2’-O-methoxyethyl, phosphorothioate modified antisense oligonucleotide targeting intronic splicing silencer N1 which is administered directly to the central nervous system using an intrathecal injection. Developed by Ionis Pharmaceuticals and licensed to Biogen, nusinersen was approved by FDA in December 2016, becoming the first approved pharmacological treatment for SMA. It was approved by the European Commission in centralised procedure in June 2017.
Physical therapy is the predominant treatment of symptoms. Orthopedic shoes and foot surgery can be used to manage foot problems.
The clinical management of an individual with SMA varies based upon the severity/type. Management of individual patients with the same type of SMA can vary. The most severe form(type 0/I), individuals have the greatest muscle weakness requiring prompt intervention. Whereas the least severe form(type 4/adult onset), individuals may not seek the certain aspects of care until later(decades) in life. While types of SMA and individuals among each type may differ, therefore specific aspects of an individual’s care can differ.
There is no cure for congenital alpha-mannosidosis. Treatment is limited to reducing or controlling the symptoms of this disorder by, for example, taking medication to control seizures, using a hearing aid to assist with hearing loss, and by having routine physical therapy to assist with muscular pain and weakness. In some cases, a wheelchair is recommended if muscle or spinal impairments immobilize the individual affected. Despite early reports to the contrary, bone marrow transplants performed at an early age have shown promise in halting the progression of this disorder.
In regards to treatment of hypochondroplasia usually takes the form of orthopedic surgery and physical therapy. Genetic counseling is advised for individuals and their families. Specifically in the case of spinal stenosis, one option is laminectomy.
The treatment (management) of Emery–Dreifuss muscular dystrophy can be done via several methods, however secondary complications should be consider in terms of the progression of EDMD, therefore cardiac defibrillators may be needed at some point by the affected individual. Other possible forms of management and treatment are the following:
- Orthopaedics
- Surgery
- Monitor/treat any cardiac issues
- Respiratory aid
- Physical therapy
The treatment of genetic disorders is an ongoing battle with over 1800 gene therapy clinical trials having been completed, are ongoing, or have been approved worldwide. Despite this, most treatment options revolve around treating the symptoms of the disorders in an attempt to improve patient quality of life.
Gene therapy refers to a form of treatment where a healthy gene is introduced to a patient. This should alleviate the defect caused by a faulty gene or slow the progression of disease. A major obstacle has been the delivery of genes to the appropriate cell, tissue, and organ affected by the disorder. How does one introduce a gene into the potentially trillions of cells which carry the defective copy? This question has been the roadblock between understanding the genetic disorder and correcting the genetic disorder.
Currently no cure or specific treatment exists to eliminate the symptoms or stop the disease progression. A consistent diet planned with the help of a dietitian along with exercises taught by a speech therapist can assist with mild symptoms of dysphagia. Surgical intervention can also help temporarily manage symptoms related to the ptosis and dysphagia. Cutting one of the throat muscles internally, an operation called cricopharyngeal myotomy, can be one way to ease symptoms in more severe cases.
Physical therapy and specifically designed exercises may assist with proximal limb weakness, though there is still no current definitive data showing it will stop the progress of the disease. Many of those affected with the proximal limb weakness will eventually require assistive devices such as a wheelchair. As with all surgical procedures, they come with many risk factors. As the dysphagia becomes more severe, patients become malnourished, lose significant weight, become dehydrated and suffer from repeated incidents of aspiration pneumonia. These last two are often the cause of death.
Since December 2016, autosomal recessive proximal spinal muscular atrophy can be treated with nusinersen. No cure is known to any of the remaining disorders of the spinal muscular atrophies group. The main objective there is to improve quality of life which can be measured using specific questionnaires. Supportive therapies are widely employed for patients who often also require comprehensive medical care involving multiple disciplines, including pulmonology, neurology, orthopedic surgery, critical care, and clinical nutrition. Various forms of physiotherapy and occupational therapy are frequently able to slow down the pace of nerve degeneration and muscle wasting. Patients also benefit greatly from the use of assistive technology.
There is currently no cure for or treatment specific to myotonic dystrophy. Therefore, the focus is on managing the complications of the disease, particularly those relating to the cardiopulmonary system as these account for 70% of deaths due to DM1. Pacemaker insertion may be required for individuals with cardiac conduction abnormalities. Improving the quality of life which can be measured using specific questionnaires is also a main objective of the medical care. Central sleep apnea or obstructive sleep apnea may cause excessive daytime sleepiness, and these individuals should undergo a sleep study. Non-invasive ventilation may be offered if there is an abnormality. Otherwise, there is evidence for the use of modafinil as a central nervous system stimulant, although a Cochrane review has described the evidence thus far as inconclusive.
Some small studies have suggested that imipramine, clomipramine and taurine may be useful in the treatment of myotonia. However, due to the weak evidence and potential side effects such as cardiac arrhythmias, these treatments are rarely used. A recent study in December 2015 showed that a common FDA approved antibiotic, Erythromycin reduced myotonia in mice. Human studies are planned for erythromycin. Erythromycin has been used successfully in patients with gastric issues.
Altered splicing of the muscle-specific chloride channel 1 (ClC-1) has been shown to cause the myotonic phenotype of DM1 and is reversible in mouse models using Morpholino antisense to modify splicing of ClC-1 mRNA.
Currently, there are no treatments for any of the congenital myopathies. Depending on the severity, there are different therapies available to help alleviate any pain and aid patients in performing varying activities. For example, many congenital myopathy patients are involved in physical or occupational therapy in an attempt to strengthen their skeletal muscles. Orthopedic surgery is usually necessary to correct skeletal deformities secondary to muscle weakness, such as scoliosis. Survival is typically determined by the level of respiratory muscle insufficiency.
As of 2010, there was no cure for MMND. People with MMND are given supportive care to help them cope, which can include physical therapy, occupational therapy, counselling, and hearing aids.
Combined strengthening and aerobic training at moderate intensity was deemed safe for individuals with neuromuscular diseases. The combination was found to increase muscle strength. Specifically, aerobic exercise via stationary bicycle with an ergometer was found to be safe and effective in improving fitness in people with DM1. The strength training or aerobic exercise may promote muscle and cardiorespiratory function, while preventing further disuse atrophy. Cardiovascular impairments and myotonic sensitivities to exercise and temperature necessitate close monitoring of people and educating people in self-monitoring during exercise via the Borg scale, heart rate monitors, and other physical exertion measurements.
Treatment for limb-girdle muscular dystrophy can take the form of exercise and physical therapy which are advised to maintain as much muscle strength and joint flexibility as possible, there are few studies corroborating the effectiveness of exercise. Physical therapy and exercise "may" prevent the rapid progression of the disease rather than halt or reverse it. Calipers, as an example, may be used to maintain mobility and quality of life. Careful attention to lung and heart health is required, corticosteroids in LGMD 2C-F individuals, shows some improvement
Additionally individuals can follow "management" that follows:
- Occupational therapy
- Respiratory therapy
- Speech therapy
- Neutralizing antibody to myostatin should not be pursued
In terms of the prognosis of limb-girdle muscular dystrophy in its mildest form, affected individuals have near-normal muscle strength and function. LGMD isn't typically a fatal disease, though it may eventually weaken the heart and respiratory muscles, leading to illness or death due to secondary disorders. The frequency of limb-girdle muscular dystrophy ranges from 1 in 14,500 (in some instances 1 in 123,000)
There is no known cure for Ehlers–Danlos syndrome. Treatment is palliative. Close monitoring of the cardiovascular system, physiotherapy, occupational therapy, and orthopedic instruments (e.g., wheelchairs, bracing, casting) may be helpful. This can help with stabilizing the joints and prevent injury. Orthopedic instruments are helpful for the prevention of further joint damage, especially for long distances, although it is advised that individuals not become entirely dependent on them until there are no other options for mobility. One should avoid activities that cause the joint to lock or overextend.
A physician may prescribe casting to stabilize joints. Physicians may refer a patient to an orthotist for orthotic treatment (bracing). Physicians may also consult a physical and/or occupational therapist to help strengthen muscles and to teach people how to properly use and preserve their joints.
There are different types of physiotherapy. Aquatic therapy promotes muscular development and coordination. With manual therapy, the joint will be gently mobilized within the range of motion and/or manipulations.
If conservative therapy is not helpful, surgical repair of joints may be necessary. Medication to decrease pain or manage cardiac, digestive, or other related conditions may be prescribed. To decrease bruising and improve wound healing, some patients have responded to ascorbic acid (vitamin C). Special precautions are often taken by medical care workers because of the sheer amount of complications that tend to arise in EDS patients. In Vascular EDS, signs of chest or abdominal pain are to be considered trauma situations.
In general, medical intervention is limited to symptomatic therapy. Before pregnancy, patients with EDS should have genetic counseling and familiarize themselves with the risks to their own bodies that pregnancy poses. Children with EDS should be provided with information about the disorder so they can understand why contact sports and other physically stressful activities should be avoided. Children should be taught early on that demonstrating the unusual positions they can maintain due to loose joints should not be done as this may cause early degeneration of the joints. Patients may find it hard to cope with the drawbacks of the disease. In this case, emotional support and behavioral and psychological therapy can be useful. Support groups can be immensely helpful for patients dealing with major lifestyle changes and poor health. Family members, teachers, and friends should be informed about EDS so they can accept and assist the child.
There is currently no known pharmacological treatment to hereditary motor and sensory neuropathies. However, the majority of people with these diseases are able to walk and be self-sufficient. Some methods of relief for the disease include physical therapy, stretching, braces, and sometimes orthopedic surgery. Since foot disorders are common with neuropathy disorders precautions must be taken to strengthen these muscles and use preventative care and physical therapy to prevent injury and deformities.