Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The first line treatment for polymyositis is corticosteroids. Specialized exercise therapy may supplement treatment to enhance quality of life.
In severe cases of PM and DM with systemic signs, an initial three to five days on intravenous corticosteroid (methylprednisolone) may be used; but normally treatment begins with a single daily (after breakfast) high dose of oral corticosteroid (prednisone). After a month or so the strength of every second day's dose is very gradually reduced over three to four months, to minimize the negative effects of the prednisone. When a high dose of prednisone cannot be reduced without losing muscle strength, or when prednisone is effective but it is producing significant complications, "steroid sparing" oral immunosuppressants such as azathioprine, mycophenolate mofetil, methotrexate and cyclosporine, may be used in combination with reduced prednisone. Some of these steroid sparing drugs can take several months to demonstrate an effect.
To minimize side effects, patients on corticosteroids should follow a strict high-protein, low-carbohydrate, low-salt diet; and with long-term corticosteroid use a daily calcium supplement and weekly vitamin D supplement (and a weekly dose of Fosamax for postmenopausal women) should be considered.
For patients not responding to this approach there is weak evidence supporting the use of intravenous immunoglobulin, ciclosporin, tacrolimus, mycophenolate mofetil and other agents; and trials of rituximab have indicated a potential therapeutic effect.
There is no cure for dermatomyositis, but the symptoms can be treated. Options include medication, physical therapy, exercise, heat therapy (including microwave and ultrasound), orthotics and assistive devices, and rest. The standard treatment for dermatomyositis is a corticosteroid drug, given either in pill form or intravenously. Immunosuppressant drugs, such as azathioprine and methotrexate, may reduce inflammation in people who do not respond well to prednisone. Periodic treatment using intravenous immunoglobulin can also improve recovery. Other immunosuppressive agents used to treat the inflammation associated with dermatomyositis include cyclosporine A, cyclophosphamide, and tacrolimus. Physical therapy is usually recommended to prevent muscle atrophy and to regain muscle strength and range of motion. Many individuals with dermatomyositis may need a topical ointment, such as topical corticosteroids, for their skin disorder. They should wear a high-protection sunscreen and protective clothing. Surgery may be required to remove calcium deposits that cause nerve pain and recurrent infections.
Antimalarial medications, especially hydroxychloroquine and chloroquine, are used to treat the rashes, as they are in similar conditions.
Rituximab is used when people don't respond to other treatments.
As of 2016, treatments for amyopathic dermatomyositis in adults did not have a strong evidence base; published treatments included antimalarial medications, steroids, taken or orally or applied to the skin, calcineurin inhibitors applied to the skin, dapsone, Intravenous immunoglobulin (IVIG), methotrexate, azathioprine, and mycophenolate mofetil. None appear to be very effective but among them, IVIG has had the best outcomes.
Once a diagnosis of JDMS is made, the treatment is often a 3-day course of Intravenous ("pulse") steroids (methylprednisolone, Solu-Medrol), followed by a high dose of oral prednisone (usually 1–2 mg/kg of body weight) for several weeks. This action usually brings the disease under control, lowering most lab tests to or near normal values. Some minor improvement in muscle symptoms may also be seen in this time, but normally it takes a long time for full muscle strength to be regained.
Once the disease process is under control, oral steroids are tapered gradually to minimize their side effects. Often, steroid-sparing drugs, such as methotrexate (a chemotherapy drug) or other DMARDs, are given to compensate for the reduction in oral steroids. Once the oral steroids are reduced to a less toxic level, the sparing agents can also be gradually withdrawn. Lab results are closely monitored during the tapering process to ensure that the disease does not recur.
In the cases where steroids or second-line drugs are not tolerated or are ineffective, there are other treatments that can be tried. These include other chemotherapy drugs, such as ciclosporin, infliximab, or other DMARDs. Another is intravenous immunoglobulin (IVIg), a blood product that has been shown to be very effective against JDMS.
To treat the skin rash, anti-malarial drugs, such as hydroxychloroquine (Plaquenil) are usually given. Topical steroid creams (hydrocortisone) may help some patients, and anti-inflammatory creams (such as tacrolimus) are proving to be very effective. Dry skin caused by the rash can be combated by regular application of sunscreen or any moisturizing cream. Most JDM patients are very sensitive to sun exposure, and sunburn may be a disease activity trigger in some, so daily application of high-SPF sunscreen is often recommended.
Despite its very similar clinical presentation to PM, IBM does not respond to the drugs that effectively treat PM, and there is no proven effective therapy for IBM. Alemtuzumab is being studied but as of May 2013 it had not demonstrated clinical effectiveness in IBM. Dysphagia (difficulty swallowing) may be improved by intravenous immunoglobulin, though more trials are needed. Non-fatiguing, systematic strength-building exercise has demonstrated benefit. Occupational and rehabilitation therapists can offer good advice on walking without falling and performing fine motor tasks, and can provide appropriate canes, braces and wheelchairs. Speech pathologists can provide advice on preventing choking episodes and reducing the anxiety of an immanent aspiration for both patients and carers.
There is no standard course of treatment to slow or stop the progression of the disease. sIBM patients do not reliably respond to the anti-inflammatory, immunosuppressant, or immunomodulatory medications. Management is symptomatic. Prevention of falls is an important consideration. Specialized exercise therapy may supplement treatment to enhance quality of life. Physical therapy is recommended to teach the patient a home exercise program, to teach how to compensate during mobility-gait training with an assistive device, transfers and bed mobility.
Polymyositis and dermatomyositis are first treated with high doses of a corticosteroids
Before the advent of modern treatments such as prednisone, intravenous immunoglobulin, plasmapheresis, chemotherapies, and other drugs, the prognosis was poor.
The cutaneous manifestations of dermatomyositis may or may not improve with therapy in parallel with the improvement of the myositis. In some people, the weakness and rash resolve together. In others, the two are not linked, with one or the other being more challenging to control. Often, cutaneous disease persists after adequate control of the muscle disease.
The risk of death from the condition is much higher if the heart or lungs are affected.
There is no current cure. The only way to treat this disease is by treating symptoms. Commonly patients are prescribed immunosuppressive drugs. Another route would be to take collagen regulation drugs.
Adult-onset Still's disease is treated with anti-inflammatory drugs. Steroids such as prednisone are used to treat severe symptoms of Still's. Other commonly used medications include hydroxychloroquine, penicillamine, azathioprine, methotrexate, etanercept, anakinra, cyclophosphamide, adalimumab, rituximab, and infliximab.
Newer drugs target interleukin-1 (IL-1), particularly IL-1β. A randomized, multicenter trial reported better outcomes in a group of 12 patients treated with anakinra than in a group of 10 patients taking other disease-modifying antirheumatic drugs. Other anti-IL1β drugs are being developed, including canakinumab and rilonacept.
The condition "juvenile-onset Still's disease" is now usually grouped under juvenile rheumatoid arthritis. However, there is some evidence that the two conditions are closely related.
Since interleukin 1β plays a central role in the pathogenesis of the disease, therapy typically targets this cytokine in the form of monoclonal antibodies (such as canakinumab), binding proteins/traps (such as rilonacept), or interleukin 1 receptor antagonists (such as anakinra). These therapies are generally effective in alleviating symptoms and substantially reducing levels of inflammatory indices. Case reports suggest that thalidomide and the anti-IL-6 receptor antibody tocilizumab may also be effective.
Of the children diagnosed with and treated for JDM, about half will recover completely. Close to 30 percent will have weakness after the disease resolves. Most children will go into remission and have their medications eliminated within two years, while others may take longer to respond or have more severe symptoms that take longer to clear up.
A common lasting effect of JDM is childhood arthritis.
Corticosteroids remain the main treatment modality for IOI. There is usually a dramatic response to this treatment and is often viewed as pathognomonic for this disease. Although response is usually quick, many agree that corticosteroids should be continued on a tapering basis to avoid breakthrough inflammation.
Although many respond to corticosteroid treatment alone, there are several cases in which adjuvant therapy is needed. While many alternatives are available, there is no particular well-established protocol to guide adjuvant therapy. Among the available options there is: surgery, alternative corticosteroid delivery, radiation therapy, non-steroidal anti-inflammatory drugs, cytotoxic agents (chlorambucil, cyclophosphamide), corticosteroid sparing immunosuppressants (methotrexate, cyclosporine, azathioprine), IV immune-globin, plasmapheresis, and biologic treatments (such as TNF-α inhibitors).
Treatment consists primarily of immunosuppressive drugs (e.g., hydroxychloroquine and corticosteroids). An interesting second line drug is methotrexate in its low-dose schedule. In 2011, the U.S. Food and Drug Administration (FDA) approved the first new drug for lupus in more than 50 years to be used in the US, belimumab. In addition to medicative therapy, due to the psychological and social impacts that Lupus may have on an individual, Cognitive Behavioural Therapy (CBT) has also been demonstrated to be effective in reducing stress, anxiety, and depression in lupus sufferers.
Treatment is initially conservative, as some patients' calcifications will spontaneously be reabsorbed, and others will have minimal symptoms. In occasional cases, surgical debridement of the abnormal tissue is required, although success of such therapy is limited.
Treatment of myositis ossificans:
- Rest
- Reduction
- Immobilization
- Anti-inflammatory drugs
- Physiotherapy management
Radiation therapy subsequent to the injury or as a preventive measure of recurrence may be applied but its usefulness is inconclusive. If the surgery performed next step in accordance with literature postoperative single low-dose radiation with 3 weeks of oral indomethacin regimen will be preventive for recurrence.
Diagnosis is fourfold: History and physical examination, elevation of creatine kinase, electromyograph (EMG) alteration, and a positive muscle biopsy.
The hallmark clinical feature of polymyositis is proximal muscle weakness, with less important findings being muscle pain and dysphagia. Cardiac and pulmonary findings will be present in approximately 25% of cases of patients with polymyositis.
Sporadic inclusion body myositis (sIBM): IBM is often confused with (misdiagnosed as) polymyositis or dermatomyositis that does not respond to treatment is likely IBM. sIBM comes on over months to years; polymyositis comes on over weeks to months. Polymyositis tends to respond well to treatment, at least initially; IBM does not.
Treatments are generally directed toward stopping the inflammation and suppressing the immune system. Typically, corticosteroids such as prednisone are used. Additionally, other immune suppression drugs, such as cyclophosphamide and others, are considered. In case of an infection, antimicrobial agents including cephalexin may be prescribed. Affected organs (such as the heart or lungs) may require specific medical treatment intended to improve their function during the active phase of the disease.
Myositis is inflammation or swelling of the muscles. Injury, medicines, infection, or an immune disorder can lead to myositis. It is a documented side effect of the lipid-lowering drugs statins and fibrates.
Because different types of myopathies are caused by many different pathways, there is no single treatment for myopathy. Treatments range from treatment of the symptoms to very specific cause-targeting treatments. Drug therapy, physical therapy, bracing for support, surgery, and massage are all current treatments for a variety of myopathies.
SJS constitutes a dermatological emergency. Patients with documented "Mycoplasma" infections can be treated with oral macrolide or oral doxycycline.
Initially, treatment is similar to that for patients with thermal burns, and continued care can only be supportive (e.g. intravenous fluids and nasogastric or parenteral feeding) and symptomatic (e.g., analgesic mouth rinse for mouth ulcer). Dermatologists and surgeons tend to disagree about whether the skin should be debrided.
Beyond this kind of supportive care, no treatment for SJS is accepted. Treatment with corticosteroids is controversial. Early retrospective studies suggested corticosteroids increased hospital stays and complication rates. No randomized trials of corticosteroids were conducted for SJS, and it can be managed successfully without them.
Other agents have been used, including cyclophosphamide and cyclosporin, but none has exhibited much therapeutic success. Intravenous immunoglobulin treatment has shown some promise in reducing the length of the reaction and improving symptoms. Other common supportive measures include the use of topical pain anesthetics and antiseptics, maintaining a warm environment, and intravenous analgesics.
An ophthalmologist should be consulted immediately, as SJS frequently causes the formation of scar tissue inside the eyelids, leading to corneal vascularization, impaired vision, and a host of other ocular problems. Those with chronic ocular surface disease caused by SJS may find some improvement with PROSE treatment (prosthetic replacement of the ocular surface ecosystem treatment).
Treatment includes supportive care with analgesics and anti-inflammatory agents. Exercise should be limited as it increases pain and extends the area of infarction. Symptoms usually resolve in weeks to months, but fifty percent of sufferers will experience relapse in either leg.
One treatment methodogy that is very promising for the treatment of camptocormia is deep brain stimulation. Previously, deep brain stimulation and bilateral stimulation of the subthalamic nucleus and/or globus pallidus internus have been used to treat patients with Parkinson's disease. Studies have shown that similar treatments could be used on patients with severe camptocormia. By using the Burke-Fahn-Marsden Dystonia Rating Scale before and after treatment, it was found that patients experienced significant functional improvement in the ability to walk.
When sIBM was originally described, the major feature noted was muscle inflammation. Two other disorders were also known to display muscle inflammation, and sIBM was classified along with them. They are dermatomyositis (DM) and polymyositis (PM) and all three illnesses were called idiopathic (of unknown origin) myositis or inflammatory myopathies.
It appears that sIBM and polymyositis share some features, especially the initial sequence of immune system activation, however, polmyositis comes on over weeks or months, does not display the subsequent muscle degeneration and protein abnormalities as seen in IBM, and as well, polymyositis tends to respond well to treatments, IBM does not. IBM is often confused with (misdiagnosed as) polymyositis. Polymyositis that does not respond to treatment is likely IBM.
Dermatomyositis shares a number of similar physical symptoms and histopathological traits as polymyositis, but exhibits a skin rash not seen in polymyositis or sIBM. It may have different root causes unrelated to either polymyositis or sIBM.
There is no cure or approved treatment for FOP. Attempts to surgically remove the bone result in explosive bone growth. While under anesthesia, people with FOP may encounter difficulties with intubation, restrictive pulmonary disease, and changes in the electrical conduction system of the heart. Activities that increase the risk of falling or soft tissue injury should be avoided, as even minor trauma may provoke heterotopic bone formation.