Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are multiple treatment methods. Low protein diets, are intended to minimize production of ammonia. Arginine, sodium benzoate and sodium phenylacetate help to remove ammonia from the blood. Dialysis may be used to remove ammonia from the blood when it reaches critical levels.
In some cases, liver transplant has been successful.
Treatments for Glycerol Kinase Deficiency are targeted to treat the symptoms because there are no permanent treatments for this disease. The main way to treat these symptoms is by using corticosteroids, glucose infusion, or mineralocorticoids. Corticosteroids are steroid hormones that are naturally produced in the adrenal glands. These hormones regulate stress responses, carbohydrate metabolism, blood electrolyte levels, as well as other uses. The mineralocorticoids, such as aldosterone control many electrolyte levels and allow the kidneys to retain sodium. Glucose infusion is coupled with insulin infusion to monitor blood glucose levels and keep them stable.
Due to the multitude of varying symptoms of this disease, there is no specific treatment that will cure this disease altogether. The symptoms can be treated with many different treatments and combinations of medicines to try to find the correct combination to offset the specific symptoms. Everyone with Glycerol Kinase Deficiency has varying degrees of symptoms and thereby requires different medicines to be used in combination to treat the symptoms; however, this disease is not curable and the symptoms can only be managed, not treated fully.
The treatment goal for individuals affected with OTC deficiency is the avoidance of hyperammonemia. This can be accomplished through a strictly controlled low-protein diet, as well as preventative treatment with nitrogen scavenging agents such as sodium benzoate. The goal is to minimize the nitrogen intake while allowing waste nitrogen to be excreted by alternate pathways. Arginine is typically supplemented as well, in an effort to improve the overall function of the urea cycle. If a hyperammonemic episode occurs, the aim of treatment is to reduce the individual's ammonia levels as soon as possible. In extreme cases, this can involve hemodialysis.
Gene therapy had been considered a possibility for curative treatment for OTC deficiency, and clinical trials were taking place at the University of Pennsylvania in the late 1990s. These were halted after the death of Jesse Gelsinger, a young man taking part in a phase I trial using an adenovirus vector. Currently, the only option for curing OTC deficiency is a liver transplant, which restores normal enzyme activity. A 2005 review of 51 patients with OTC deficiency who underwent liver transplant estimated 5-year survival rates of greater than 90%. Severe cases of OTC deficiency are typically evaluated for liver transplant by 6 months of age.
Standard of care for treatment of CPT II deficiency commonly involves limitations on prolonged strenuous activity and the following dietary stipulations:
- The medium-chain fatty acid triheptanoin appears to be an effective therapy for adult-onset CPT II deficiency.
- Restriction of lipid intake
- Avoidance of fasting situations
- Dietary modifications including replacement of long-chain with medium-chain triglycerides supplemented with L-carnitine
Vestronidase alfa-vjbk (Mepsevii) is the only drug approved by U.S. Food and Drug Administration for the treatment of pediatric and adult patients.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
Treatments include:
- bone marrow transplant
- ADA enzyme in PEG vehicle
There are no specific treatments for lipid storage disorders; however, there are some highly effective enzyme replacement therapies for people with type 1 Gaucher disease and some patients with type 3 Gaucher disease. There are other treatments such as the prescription of certain drugs like phenytoin and carbamazepine to treat pain for patients with Fabry disease. Furthermore, gene thereapies and bone marrow transplantation may prove to be effective for certain lipid storage disorders. Diet restrictions do not help prevent the buildup of lipids in the tissues.
Since phytanic acid is not produced in the human body, individuals with Refsum disease are commonly placed on a phytanic acid-restricted diet and avoid the consumption of fats from ruminant animals and certain fish, such as tuna, cod, and haddock. Grass feeding animals and their milk are also avoided. Recent research has shown that CYP4 isoform enzymes could help reduce the over-accumulation of phytanic acid "in vivo". Plasmapheresis is another medical intervention used to treat patients. This involves the filtering of blood to ensure there is no accumulation of phytanic acid.
In adults, fibrates and statins have been prescribed to treat hyperglycerolemia by lowering blood glycerol levels. Fibrates are a class of drugs that are known as amphipathic carboxylic acids that are often used in combination with Statins. Fibrates work by lowering blood triglyceride concentrations. When combined with statins, the combination will lower LDL cholesterol, lower blood triglycerides and increase HDL cholesterol levels.
If hyperglycerolemia is found in a young child without any family history of this condition, then it may be difficult to know whether the young child has the symptomatic or benign form of the disorder. Common treatments include: a low-fat diet, IV glucose if necessary, monitor for insulin resistance and diabetes, evaluate for Duchenne muscular dystrophy, adrenal insufficiency & developmental delay.
The Genetic and Rare Diseases Information Center (GARD) does not list any treatments at this time.
On September 1990, the first gene therapy to combat this disease was performed by Dr. William French Anderson on a four-year-old girl, Ashanti DeSilva, at the National Institutes of Health, Bethesda, Maryland, U.S.A.
In April 2016 the Committee for Medicinal Products for Human Use of the European Medicines Agency endorsed and recommended for approval a stem cell gene therapy called Strimvelis, for children with ADA-SCID for whom no matching bone marrow donor is available.
Treatment is depended on the type of glycogen storage disease. E.g. GSD I is typically treated with frequent small meals of carbohydrates and cornstarch to prevent low blood sugar, while other treatments may include allopurinol and human granulocyte colony stimulating factor.
In ruminant animals, the gut fermentation of consumed plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. Although humans cannot derive significant amounts of phytanic acid from the consumption of chlorophyll present in plant materials, it has been proposed that the great apes (bonobos, chimpanzees, gorillas, and orangutans) can derive significant amounts of phytanic acid from the hindgut fermentation of plant materials.
On April 27, 2017, the U.S. Food and Drug Administration approved Brineura (cerliponase alfa) as the first specific treatment for NCL. Brineura is enzyme replacement therapy manufactured through recombinant DNA technology. The active ingredient in Brineura, cerliponase alpha, is intended to slow loss of walking ability in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as tripeptidyl peptidase-1 (TPP1) deficiency. Brineura is administered into the cerebrospinal fluid by infusion via a surgically implanted reservoir and catheter in the head (intraventricular access device).
There is currently no therapy or cure for MLD in late infantile patients displaying symptoms, or for juvenile and adult onset with advanced symptoms. These patients typically receive clinical treatment focused on pain and symptom management.
Pre-symptomatic late infantile MLD patients, as well as those with juvenile or adult MLD that are either presymptomatic or displaying mild symptoms, can consider bone marrow transplantation (including stem cell transplantation), which may slow down progression of the disease in the central nervous system. However, results in the peripheral nervous system have been less dramatic, and the long-term results of these therapies have been mixed. Recent success has involved stem cells being taken from the bone marrow of children with the disorder and infecting the cells with a retro-virus, replacing the stem cells' mutated gene with the repaired gene before re-injecting it back into the patient where they multiplied. The children by the age of five were all in good condition and going to kindergarten when normally by this age, children with the disease can not even speak.
Several therapy options are currently being investigated using clinical trials primarily in late infantile patients. These therapies include gene therapy, enzyme replacement therapy (ERT), substrate reduction therapy (SRT), and potentially enzyme enhancement therapy (EET).
A team of international researchers and foundations gathered in 2008 to form an international MLD Registry to create and manage a shared repository of knowledge, including the natural history of MLD. This consortium consisted of scientific, academic and industry resources. This registry never became operational.
A painkiller available in several European countries, Flupirtine, has been suggested to possibly slow down the progress of NCL, particularly in the juvenile and late infantile forms. No trial has been officially supported in this venue, however. Currently the drug is available to NCL families either from Germany, Duke University Medical Center in Durham, North Carolina, and the Hospital for Sick Children in Toronto, Ontario.
Cardiac and respiratory complications are treated symptomatically. Physical and occupational therapy may be beneficial for some patients. Alterations in diet may provide temporary improvement but will not alter the course of the disease. Genetic counseling can provide families with information regarding risk in future pregnancies.
On April 28, 2006 the US Food and Drug Administration approved a Biologic License Application (BLA) for Myozyme (alglucosidase alfa, rhGAA), the first treatment for patients with Pompe disease, developed by a team of Duke University researchers. This was based on enzyme replacement therapy using biologically active recombinant human alglucosidase alfa produced in Chinese Hamster Ovary cells. Myozyme falls under the FDA Orphan Drug designation and was approved under a priority review.
The FDA has approved Myozyme for administration by intravenous infusion of the solution. The safety and efficacy of Myozyme were assessed in two separate clinical trials in 39 infantile-onset patients with Pompe disease ranging in age from 1 month to 3.5 years at the time of the first infusion. Myozyme treatment clearly prolongs ventilator-free survival and overall survival. Early diagnosis and early treatment leads to much better outcomes. The treatment is not without side effects which include fever, flushing, skin rash, increased heart rate and even shock; these conditions, however, are usually manageable.
Myozyme costs an average of US$300,000 a year and must be taken for the patients' entire life, so some American insurers have refused to pay for it. On August 14, 2006, Health Canada approved Myozyme for the treatment of Pompe disease. On June 14, 2007 the Canadian Common Drug Review issued their recommendations regarding public funding for Myozyme therapy. Their recommendation was to provide funding to treat a very small subset of Pompe patients (Infants less one year of age with cardiomyopathy). Genzyme received broad approval in the European Union. On May 26, 2010 FDA approved Lumizyme, a similar version of Myozyme, for the treament of late-onset Pompe disease.
A new treatment option for this disease is called Lumizyme. Lumizyme and Myozyme have the same generic ingredient (Alglucosidase Alfa) and manufacturer (Genzyme Corporation). The difference between these two products is in the manufacturing process. Today, the Myozyme is made using a 160-L bioreactor, while the Lumizyme uses a 4000-L bioreactor. Because of the difference in the manufacturing process, the FDA claims that the two products are biologically different. Moreover, Lumizyme is FDA approved as replacement therapy for late-onset (noninfantile) Pompe disease without evidence of cardiac hypertrophy in patients 8 years and older. Myozyme is FDA approved for replacement therapy for infantile-onset Pompe disease.
Recent studies on chaperone molecules to be used with myozyme are starting to show promising results on animal models.
LAL deficiency can be treated with sebelipase alfa is a recombinant form of LAL that was approved in 2015 in the US and EU. The disease of LAL affects < 0.2 in 10,000 people in the EU. According to an estimate by a Barclays analyst, the drug will be priced at about US $375,000 per year.
It is administered once a week via intraveneous infusion in people with rapidly progressing disease in the first six months of life. In people with less aggressive disease, it is given every other week.
Before the drug was approved, treatment of infants was mainly focused on reducing specific complications and was provided in specialized centers. Specific interventions for infants included changing from breast or normal bottle formula to a specialized low fat formula, intravenous feeding, antibiotics for infections, and steroid replacement therapy because of concerns about adrenal function.
Statins were used in people with LAL-D prior to the approval of sebelipase alfa; they helped control cholesterol but did not appear to slow liver damage; liver transplantation was necessary in most patients.
There is no known cure for Niemann–Pick type C, nor is there any FDA-standard approved disease modifying treatment. Supportive care is essential and substantially improves the quality of life of people affected by NPC. The therapeutic team may include specialists in neurology, pulmonology, gastroenterology, psychiatrist, orthopedics, nutrition, physical therapy and occupational therapy. Standard medications used to treat symptoms can be used in NPC patients. As patients develop difficulty with swallowing, food may need to be softened or thickened, and eventually, parents will need to consider placement of a gastrostomy tube (g-tube, feeding tube).
An observational study is underway at the National Institutes of Health to better characterize the natural history of NPC and to attempt to identify markers of disease progression.
In 2014 the European Medicines Agency (EMA) granted orphan drug designation to arimoclomol for the treatment of Niemann-Pick type C. This was followed in 2015 by the U.S. Food & Drug Administration (FDA). Dosing in a placebo-controlled phase II/III clinical trial to investigate treatment for Niemann-Pick type C (for patients with both type C1 and C2) using arimoclomol began in 2016. Arimoclomol, which is orally administered, induces the heat shock response in cells and is well tolerated in humans.
"(current as of January 2017)"
- Shire, with headquarters in Switzerland and a major research center in Lexington, MA, is developing and studying their intrathecal SHP 611 (formerly HGT-1110) ERT [Enzyme Replacement Therapy].
- Clinical Trial
- Recruiting for the clinical trial started January, 2012 and was fully recruited by mid-2014.
- a Fourth cohort was recruited during the first half of 2016. This cohort is fully populated and no new patients are being recruited. Data from this cohort will be gathered by late 2016 with another 3–6 months of outcome analysis expected before a decision is made on what the next drug development and Trial plans will be.
- Phase I/II data is scheduled to be presented in February 2017 at the LDN/WORLD conference.
- Early (post-40 week) results showed the drug was well tolerated at all doses and the 100 mg dose showed the slowest decline in GMFM-88 scores over the trial period. Data continues to be studied.
- Trial Centers
- Trial centers were opened in Europe, South America and Australia
- Patients were successfully recruited in all trial centers
- Inclusion Criteria
- 1st symptoms before age 30 months, currently 7 years old or younger
- Ambulatory – be able to walk 10 steps while holding only one hand.
- Additional clinical trial information & inclusion criteria, can be found on the MLD Foundation website here and at the Clinical Trials.gov site.
- The clinical trial is a 38-week multi-site study of 18 children in three different dosing cohorts. The 'no treatment' placebo arm was removed from the trial in June 2012.
- Patients must go to one of five trial sites for their every other week enzyme infusions: Copenhagen Denmark, Paris France, Tübingen Germany, Sydney Australia, or Porto Alegre Brazil. Derqui, Argentina is awaiting approval.
- A new intrathecal port from a new vendor was approved for use starting December 2013. See the MLD Foundation website for more details.
- SHP611 has "orphan product" status in both Europe and the United States.
- "History:" Shire suspended development of the Metazyme intravenous ERT product in 2010. It was in clinical trial when it was acquired from Zymenex in 2008 (subsequently renamed HGT-1111 by Shire) after it was shown to not have sufficient efficacy by a Phase I/II clinical trial in Europe. The initial study completed September 2008 and the extension study completed October 2010 with the cessation of product supply to trial participants.
Infants with LAL deficiencies typically show signs of disease in the first weeks of life and if untreated, die within 6–12 months due to multi-organ failure. Older children or adults with LAL-D may remain undiagnosed or be misdiagnosed until they die early from a heart attack or stroke or die suddenly of liver failure. The first enzyme replacement therapy was approved in 2015. In those clinical trials nine infants were followed for one year; 6 of them lived beyond one year. Older children and adults were followed for 36 weeks.
With many different types of leukodystrophies and causes, treatment therapies vary for each type. Many studies and clinical trials are in progress to find treatment and therapies for each of the different leukodystrophies. Stem cell transplants and gene therapy appear to be the most promising in treating all leukodystrophies providing it is done as early as possible.
For hypomyelinating leukodystrophies, therapeutic research into cell-based therapies appears promising. Oligodendrocyte precursor cells and neural stem cells have been transplanted successfully and have shown to be healthy a year later. Fractional anisotropy and radial diffusivity maps showed possible myelination in the region of the transplant. Induced pluripotent stem cells, oligodendrocyte precursor cells, gene correction, and transplantation to promote the maturation, survival, and myelination of oligodendrocytes seem to be the primary routes for possible treatments.
For three types of leukodystrophies (X-linked adrenoleukodystrophy (X-ALD), metachromatic leukodystrophy (MLD) and Krabbe Disease (globoid cell leukodystrophy - GLD), gene therapy using autologous hematopoietic stem cells to transfer the disease gene with lentiviral vectors have shown to be successful and are currently being used in clinical trials for X-ALD and MLD. The progression of X-ALD has shown to be disrupted with hematopoietic stem cell gene therapy but the exact reason why demyelination stops and the amount of stem cells needed is unclear. While there is an accumulation of very long chain fatty acids in the brain, it does not seem to be the reason behind the disease as gene therapy does not correct it.
Adeno-associated vectors have also been used in intracerebral injections to treat MLD. In some patients with MLD, their IQ increased, nerve conduction improved, their MRIs appeared stable, and had normal enzyme levels. Although the greater majority of patients seem to improve after the transplant, some do not respond well to treatment, which may cause devastating outcomes. For those leukodystrophies that result from a deficiency of lysozyme enzymes, such as Krabbes disease, enzyme replacement therapy seems hopeful, however, this proves difficult as the blood-brain barrier severely limits what can pass through into the central nervous system. Due to this obstacle, most research and clinical trials are turning to allogeneic hematopoietic stem cell transplantation.
As of 2010 there was no treatment that addressed the cause of Tay–Sachs disease or could slow its progression; people receive supportive care to ease the symptoms and extend life by reducing the chance of contracting infections. Infants are given feeding tubes when they can no longer swallow. In late-onset Tay–Sachs, medication (e.g., lithium for depression) can sometimes control psychiatric symptoms and seizures, although some medications (e.g., tricyclic antidepressants, phenothiazines, haloperidol, and risperidone) are associated with significant adverse effects.
Supervised exercise programs have been shown in small studies to improve exercise capacity by several measures.
Oral sucrose treatment (for example a sports drink with 75 grams of sucrose in 660 ml.) taken 30 minutes prior to exercise has been shown to help improve exercise tolerance including a lower heart rate and lower perceived level of exertion compared with placebo.