Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
Regular administration of exogenous granulocyte colony-stimulating factor (filgrastim) clinically improves neutrophil counts and immune function and is the mainstay of therapy, although this may increase risk for myelofibrosis and acute myeloid leukemia in the long term.
Over 90% of SCN responds to treatment with granulocyte colony-stimulating factor (filgrastim), which has significantly improved survival.
Once a diagnosis is made, each individual's treatment is based on an individual’s clinical condition. Hematopoietic stem cell transplant is a possible treatment of this condition but its effectiveness is unproven.
Additionally, magnesium supplementation is a promising potential treatment for XMEN. One of the consequences of loss of "MAGT1" function is a decreased level of unbound intracellular Mg2+. This decrease leads to loss of expression of an immune cell receptor called "NKG2D", which is involved in EBV-immunity. Remarkably, Mg2+ supplementation can restore "NKG2D" expression and other functions that are abnormal in patients with XMEN. Early evidence suggests continuous oral magnesium threonate supplementation is safe and well tolerated. Nonetheless, further research is needed to evaluate the use of Mg2+ as a treatment for XMEN. It remains unclear if such supplementation will protect against the development of lymphoma in patients with XMEN. Investigators at the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health currently have clinical protocols to study new approaches to the diagnosis and treatment of this disorder.
In secondary cases, treatment of the cause, where possible, is indicated. Additionally, treatment for HLH itself is usually required.
While optimal treatment of HLH is still being debated, current treatment regimes usually involve high dose corticosteroids, etoposide and cyclosporin. Intravenous immunoglobulin is also used. Methotrexate and vincristine have also been used. Other medications include cytokine targeted therapy.
An experimental treatment, an anti IFN-gamma monoclonal antibody tentatively named NI-0501, is in clinical trials for treating primary HLH. The FDA awarded breakthrough drug status to NI-0501 in 2016.
Infusions of immune globulin can reduce the frequency of bacterial infections, and G-CSF or GM-CSF therapy improves blood neutrophil counts.
As WHIM syndrome is a molecular disease arising from gain-of-function mutations in CXCR4, preclinical studies identified plerixafor, a specific CXCR4 antagonist, as a potential mechanism-based therapeutic for the disease. Two subsequent clinical trials involving a handful of patients with WHIM syndrome demonstrated that plerixafor could increase white blood cell counts and continues to be a promising targeted therapy.
A woman with spontaneous remission of her WHIM syndrome due to Chromothripsis in one of her blood stem cells has been identified.
In support of these studies, a 2014 phase I clinical trial treated 3 patients diagnosed with WHIM syndrome with plerixafor twice a day for 6 months. All three patients presented with multiple reoccurring infections before treatment and all had an increase in their white blood cell count post treatment. One patient (P3) had a decrease in his infections by 40% while the remaining 2 patients (P1 and P2) had no infections throughout the entirety of the treatment. Plerixafor may also proof to have anti-human papillomavirus (HPV) properties as all patients experienced a shrinkage or complete disappearance of their warts. While this treatment shows promise in treating neutropenia (decreased white blood cells), this trial showed no increase of immune globulins in the body. A phase III clinical trial has been approved to compare the infection prevention ability of plerixafor versus the current treatment of G-CSF in patients with WHIM.
Treatment for individuals with X-linked thrombocytopenia is typically focused on managing symptoms of the disorder. Splenectomy has been shown to improve platelet counts but also significantly increases the risk of life-threatening infections for patients with XLT. Therefore, these individuals must take antibiotics for the rest of their life to avoid fatal bacteremia. In the event of significant bleeding, platelet transfusions should be administered. Circumcision should be avoided for infant males with XLT due to the risk of bleeding and infection. Regular follow ups to track blood counts should be utilized as well as confirming that any medications, over the counter or prescription, will not interfere with platelet functioning.
Recent research has suggested that hematopoietic stem cell transplantation may be a treatment option for patients with XLT despite associated risks. Other studies have shown that treatment with corticosteroids or intravenous immunoglobulin in any dose or duration may have a beneficial impact on platelet counts, although transiently. Furthermore, research has shown that splenectomy may not be a good treatment option for patients with XLT as it increases the risk of severe infections. This same research showed that patients with XLT have a high overall survival rate but they are at risk for severe life-threatening complications associated with this disorder, such as serious bleeding events and malignancies.
Recombinant granulocyte-colony stimulating factor preparations, such as filgrastim can be effective in patients with congenital forms of neutropenia including severe congenital neutropenia and cyclic neutropenia, the amount needed (dosage) varies considerably (depending on the individual's condition) to stabilize the neutrophil count. Guidelines for neutropenia regarding diet are currently being studied.
Most cases of neonatal neutropenia are temporary. Antibiotic prophylaxis is not recommended because of the possibility of encouraging the development of multidrug-resistant bacterial strains.
Neutropenia can be treated with hematopoietic Growth Factors, granulocyte-colony stimulating factor (G-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF). These are cytokines (inflammation-inducing chemicals) that are present naturally in the body. These factors are used regularly in cancer treatment with adults and children. The factors promote neutrophil recovery following anticancer therapy.
The administration of intravenous immunoglobulins (IVIGs) has had some success in treating neutropenias of alloimmune and autoimmune origins with a response rate of about 50%. Blood transfusions have not been effective.
The best treatment for MAS has not been firmly established. Most commonly used treatments include high-dose glucocorticoids, and cyclosporine. In refractory cases treatment regimens are used similar to that in HLH.
There is no real treatment for Felty's syndrome, rather the best method in management of the disease is to control the underlying rheumatoid arthritis. Immunosuppressive therapy for RA often improves granulocytopenia and splenomegaly; this finding reflects the fact that Felty's syndrome is an immune-mediated disease. A major challenge in treating FS is recurring infection caused by neutropenia. Therefore, in order to decide upon and begin treatment, the cause and relationship of neutropenia with the overall condition must be well understood. Most of the traditional medications used to treat RA have been used in the treatment of Felty's syndrome. No well-conducted, randomized, controlled trials support the use of any single agent. Most reports on treatment regimens involve small numbers of patients.
Splenectomy may improve neutropenia in severe disease.
Use of rituximab and leflunomide have been proposed.
Use of gold therapy has also been described.
Prognosis is dependent on the severity of symptoms and the patient's overall health.
Treatment of Wiskott–Aldrich syndrome is currently based on correcting symptoms. Aspirin and other nonsteroidal anti-inflammatory drugs should be avoided, since these may interfere with platelet function. A protective helmet can protect children from bleeding into the brain which could result from head injuries. For severely low platelet counts, patients may require platelet transfusions or removal of the spleen. For patients with frequent infections, intravenous immunoglobulins (IVIG) can be given to boost the immune system. Anemia from bleeding may require iron supplementation or blood transfusion.
As Wiskott–Aldrich syndrome is primarily a disorder of the blood-forming tissues, a hematopoietic stem cell transplant, accomplished through a umbilical cord blood or bone marrow transplant offers the only current hope of cure. This may be recommended for patients with HLA-identical donors, matched sibling donors, or even in cases of incomplete matches if the patient is age 5 or under.
Studies of correcting Wiskott–Aldrich syndrome with gene therapy using a lentivirus have begun.
Proof-of-principle for successful hematopoietic stem cell gene therapy has been provided for patients with Wiskott–Aldrich syndrome.
Currently, many investigators continue to develop optimized gene therapy vectors. In July 2013 the Italian San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) reported that three children with Wiskott–Aldrich syndrome showed significant improvement 20–30 months after being treated with a genetically modified lentivirus. In April 2015 results from a follow-up British and French trial where six children with Wiskott–Aldrich syndrome were treated with gene therapy were described as promising. Median follow-up time was 27 months.
Pancreatic exocrine insufficiency may be treated through pancreatic enzyme supplementation, while severe skeletal abnormalities may require surgical intervention. Neutropenia may be treated with granulocyte-colony stimulating factor (GCSF) to boost peripheral neutrophil counts. However, there is ongoing and unresolved concern that this drug could contribute to the development of leukemia. Signs of progressive marrow failure may warrant bone marrow transplantation (BMT). This has been used successfully to treat hematological aspects of disease. However, SDS patients have an elevated occurrence of BMT-related adverse events, including graft-versus-host disease (GVHD) and toxicity relating to the pre-transplant conditioning regimen. In the long run, study of the gene that is mutated in SDS should improve understanding of the molecular basis of disease. This, in turn, may lead to novel therapeutic strategies, including gene therapy and other gene- or protein-based approaches.
The prognosis is guarded with an overall mortality of 50%. Poor prognostic factors included HLH associated with malignancy, with half the patients dying by 1.4 months compared to 22.8 months for non-tumour associated HLH patients.
Secondary HLH in some individuals may be self-limited because patients are able to fully recover after having received only supportive medical treatment (i.e., IV immunoglobulin only). However, long-term remission without the use of cytotoxic and immune-suppressive therapies is unlikely in the majority of adults with HLH and in those with involvement of the central nervous system (brain and/or spinal cord).
This form usually lessens in severity within two years of diagnosis.
The use of prophylactic antibiotics has been proposed.
See article at BioMed Central site:
Generally, patients with febrile neutropenia are treated with empirical antibiotics until the neutrophil count has recovered (absolute neutrophil counts greater than 500/mm) and the fever has abated; if the neutrophil count does not improve, treatment may need to continue for two weeks or occasionally more. In cases of recurrent or persistent fever, an antifungal agent should be added.
Guidelines issued in 2002 by the Infectious Diseases Society of America recommend the use of particular combinations of antibiotics in specific settings; mild low-risk cases may be treated with a combination of oral amoxicillin-clavulanic acid and ciprofloxacin, while more severe cases require cephalosporins with activity against "Pseudomonas aeruginosa" (e.g. cefepime), or carbapenems (imipenem or meropenem). A subsequent meta-analysis published in 2006 found cefepime to be associated with more negative outcomes, and carbapenems (while causing a higher rate of pseudomembranous colitis) were the most straightforward in use.
In 2010, updated guidelines were issued by the Infectious Diseases Society of America, recommending use of cefepime, carbapenems (meropenem and imipenem/cilastatin), or piperacillin/tazobactam for high-risk patients and amoxicillin-clavulanic acid and ciprofloxacin for low-risk patients. Patients who do not strictly fulfill the criteria of low-risk patients should be admitted to the hospital and treated as high-risk patients.
In developing new chemotherapeutics(化疗方法),the efficacy of the drug against the disease is often balanced against the likely level of myelotoxicity the drug will cause. In-vitro colony forming cell (CFC) assays using normal human bone marrow grown in appropriate semi-solid media such as ColonyGEL have been shown to be useful in predicting the level of clinical myelotoxicity a certain compound might cause if administered to humans. These predictive in-vitro assays reveal effects the administered compounds have on the bone marrow progenitor cells that produce the various mature cells in the blood and can be used to test the effects of single drugs or the effects of drugs administered in combination with others.
Bone marrow suppression due to anti-cancer chemotherapy is much harder to treat and often involves hospital admission, strict infection control, and aggressive use of intravenous antibiotics at the first sign of infection.
G-CSF is used clinically (see Neutropenia) but tests in mice suggest it may lead to bone loss.
GM-CSF has been compared to G-CSF as a treatment of chemotherapy-induced myelosuppression/Neutropenia.
Investigators at the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health currently have clinical protocols to study new approaches to the diagnosis and treatment of this disorder.
If left untreated, patients with fever and absolute neutrophil count <500 have a mortality of up to 70% within 24 hours. The prognosis of neutropenia depends on the cause. Antibiotic agents have improved the prognosis for individuals with severe neutropenia. Neutropenic fever in individuals treated for cancer has a mortality of 4-30%.
NEH is self-limited and usually resolves without treatment. In the overwhelming majority of the cases, spontaneous resolution occurs within 1–2 weeks.
However, if the patient developed NEH after chemotherapy, the offending cytotoxic drug has to be discontinued, and the patient must avoid this particular cytotoxic drug in the future, because NEH usually re occurs upon re exposure to the same cytotoxic drug.
Despite the fact that NEH is self limited and usually resolves without treatment, some researchers use treatment, mainly systemic corticosteroids, although the efficacy of such a therapy has not been demonstrated in a large randomised controlled clinical trial until now.
The Multinational Association for Supportive Care in Cancer (MASCC) risk index can be used to identify low-risk patients (score ≥21 points) for serious complications of febrile neutropenia (including death, intensive care unit admission, confusion, cardiac complications, respiratory failure, renal failure, hypotension, bleeding, and other serious medical complications). The score was developed to select patients for therapeutic strategies that could potentially be more convenient or cost-effective. A prospective trial demonstrated that a modified MASCC score can identify patients with febrile neutropenia at low risk of complications, as well.
In contrast, the Clinical Index of Stable Febrile Neutropenia (CISNE) score is specific of patients with solid tumors and seemingly stable episodes. CISNE is able to discriminate groups of patients who are at low, intermediate, and high risk of complications in this population. With the CISNE, the complication rate was determined to be 1.1% for low-risk patients, 6.2% for intermediate-risk patients, and 36.0% for high-risk patients. The prime purpose of this model was to avoid complications from an early hospital release. On the contrary, CISNE should not be used so much to select low-risk patients for outpatient treatment.
A single case report suggested that oral dapsone may be useful for prevention. However, the efficacy of oral dapsone as prevention has not been demonstrated very clearly until now.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
The goals of therapy are to control symptoms, improve quality of life, improve overall survival, and decrease progression to AML.
The IPSS scoring system can help triage patients for more aggressive treatment (i.e. bone marrow transplant) as well as help determine the best timing of this therapy. Supportive care with blood products and hematopoietic growth factors (e.g. erythropoietin) is the mainstay of therapy. The regulatory environment for the use of erythropoietins is evolving, according to a recent US Medicare National coverage determination. No comment on the use of hematopoeitic growth factors for MDS was made in that document though.
Three agents have been approved by the FDA for the treatment of MDS:
1. 5-azacytidine: 21-month median survival
2. Decitabine: Complete response rate reported as high as 43%. A phase I study has shown efficacy in AML when decitabine is combined with valproic acid.
3. Lenalidomide: Effective in reducing red blood cell transfusion requirement in patients with the chromosome 5q deletion subtype of MDS
Chemotherapy with the hypomethylating agents 5-azacytidine and decitabine has been shown to decrease blood transfusion requirements and to retard the progression of MDS to AML. Lenalidomide was approved by the FDA in December 2005 only for use in the 5q- syndrome. In the United States, treatment of MDS with lenalidomide costs about $9,200 per month.
Stem cell transplantation, particularly in younger (i.e. less than 40 years of age) and more severely affected patients, offers the potential for curative therapy. Success of bone marrow transplantation has been found to correlate with severity of MDS as determined by the IPSS score, with patients having a more favorable IPSS score tending to have a more favorable outcome with transplantation.