Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Currently, there is no cure for infantile Refsum disease syndrome, nor is there a standard course of treatment. Infections should be guarded against to prevent such complications as pneumonia and respiratory distress. Other treatment is symptomatic and supportive. Patients show variable lifespans with some individuals surviving until adulthood and into old age.
Currently, no cure for Zellweger syndrome is known, nor is a course of treatment made standard. Infections should be guarded against to prevent such complications as pneumonia and respiratory distress. Other treatment is symptomatic and supportive. Patients usually do not survive beyond one year of age.
The malabsorption resulting from lack of bile acid has resulted in elemental formula being suggested, which are low in fat with < 3% of calories derived from long chain triglycerides (LCT). However, reduced very long chain fatty acids (VLCFA) has not been shown to reduce blood VLCFA levels , likely because humans can endogenously produce most VLCFA. Plasma VLCFA levels are decreased when dietary VLCFA is reduced in conjunction with supplementation of Lorenzo’s oil (a 4:1 mixture of glyceryl trioleate and glyceryl trierucate) in X-ALD patients . Since docosahexaenoic acid (DHA) synthesis is impaired [59], DHA supplementation was recommended, but a placebo-controlled study has since showed no clinical efficacy . Due to the defective bile acid synthesis, fat soluble supplements of vitamins, A, D, E, and K are recommended.
There are multiple treatment methods. Low protein diets, are intended to minimize production of ammonia. Arginine, sodium benzoate and sodium phenylacetate help to remove ammonia from the blood. Dialysis may be used to remove ammonia from the blood when it reaches critical levels.
In some cases, liver transplant has been successful.
Treatment remains largely supportive. The behavioral disturbances of MPS-III respond poorly to medication. If an early diagnosis is made, bone marrow replacement may be beneficial. Although the missing enzyme can be manufactured and given intravenously, it cannot penetrate the blood–brain barrier and therefore cannot treat the neurological manifestations of the disease.
Along with many other lysosomal storage diseases, MPS-III exists as a model of a monogenetic disease involving the central nervous system.
Several promising therapies are in development. Gene therapy in particular is under Phase I/II clinical trial in France since October 2011 under the leadership of Paris-based biotechnology company Lysogene. Other potential therapies include chemical modification of deficient enzymes to allow them to penetrate the blood–brain barrier, stabilisation of abnormal but active enzyme to prevent its degradation, and implantation of stem cells strongly expressing the missing enzyme. For any future treatment to be successful, it must be administered as early as possible. Currently MPS-III is mainly diagnosed clinically, by which stage it is probably too late for any treatment to be very effective. Neonatal screening programs would provide the earliest possible diagnosis.
The flavonoid genistein decreases the pathological accumulation of glycosaminoglycans in Sanfilippo syndrome. "In vitro", animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by an adequate dose of genistein. Despite its reported beneficial properties, genistein also has toxic side effects.
Several support and research groups have been established to speed the development of new treatments for Sanfilippo syndrome.
There is no proven treatment for congenital lactic acidosis. Treatments that are occasionally used or that are under investigation include the ketogenic diet and dichloroacetate. Other treatments aim to relieve symptoms – for example, anticonvulsants may be used to relieve seizures.
Standard of care for treatment of CPT II deficiency commonly involves limitations on prolonged strenuous activity and the following dietary stipulations:
- The medium-chain fatty acid triheptanoin appears to be an effective therapy for adult-onset CPT II deficiency.
- Restriction of lipid intake
- Avoidance of fasting situations
- Dietary modifications including replacement of long-chain with medium-chain triglycerides supplemented with L-carnitine
Patients with propionic acidemia should be started as early as possible on a low protein diet. In addition to a protein mixture that is devoid of methionine, threonine, valine, and isoleucine, the patient should also receive -carnitine treatment and should be given antibiotics 10 days per month in order to remove the intestinal propiogenic flora. The patient should have diet protocols prepared for him with a “well day diet” with low protein content, a “half emergency diet” containing half of the protein requirements, and an “emergency diet” with no protein content. These patients are under the risk of severe hyperammonemia during infections that can lead to comatose states.
Liver transplant is gaining a role in the management of these patients, with small series showing improved quality of life.
It has been suggested that a possible method of treatment for histidinemia is through the adoption of a diet that is low in histidine intake. However, the requirement for such dietary restrictions is typically unnecessary for 99% of all cases of histidinemia.
Low-protein food is recommended for this disorder, which requires food products low in particular types of amino acids (e.g., methionine).
With many different types of leukodystrophies and causes, treatment therapies vary for each type. Many studies and clinical trials are in progress to find treatment and therapies for each of the different leukodystrophies. Stem cell transplants and gene therapy appear to be the most promising in treating all leukodystrophies providing it is done as early as possible.
For hypomyelinating leukodystrophies, therapeutic research into cell-based therapies appears promising. Oligodendrocyte precursor cells and neural stem cells have been transplanted successfully and have shown to be healthy a year later. Fractional anisotropy and radial diffusivity maps showed possible myelination in the region of the transplant. Induced pluripotent stem cells, oligodendrocyte precursor cells, gene correction, and transplantation to promote the maturation, survival, and myelination of oligodendrocytes seem to be the primary routes for possible treatments.
For three types of leukodystrophies (X-linked adrenoleukodystrophy (X-ALD), metachromatic leukodystrophy (MLD) and Krabbe Disease (globoid cell leukodystrophy - GLD), gene therapy using autologous hematopoietic stem cells to transfer the disease gene with lentiviral vectors have shown to be successful and are currently being used in clinical trials for X-ALD and MLD. The progression of X-ALD has shown to be disrupted with hematopoietic stem cell gene therapy but the exact reason why demyelination stops and the amount of stem cells needed is unclear. While there is an accumulation of very long chain fatty acids in the brain, it does not seem to be the reason behind the disease as gene therapy does not correct it.
Adeno-associated vectors have also been used in intracerebral injections to treat MLD. In some patients with MLD, their IQ increased, nerve conduction improved, their MRIs appeared stable, and had normal enzyme levels. Although the greater majority of patients seem to improve after the transplant, some do not respond well to treatment, which may cause devastating outcomes. For those leukodystrophies that result from a deficiency of lysozyme enzymes, such as Krabbes disease, enzyme replacement therapy seems hopeful, however, this proves difficult as the blood-brain barrier severely limits what can pass through into the central nervous system. Due to this obstacle, most research and clinical trials are turning to allogeneic hematopoietic stem cell transplantation.
The most common method to manage hypoglycemia and diabetes is with an insulin pump. . However in infants and very young children long acting insulins like Glargine and Levemir are preferred to prevent recurrent hypoglycemia . As soon as parent knows Walcott-Rallison syndrome is the source, treatment or therapy plans need to be drawn up along with frequent check ins to make sure kidney and liver functions are around normal and insulin therapy are working. If needed, the patient can undergo thyroxin therapy in order to maintain proper thyroid stimulating hormone levels. This has only been needed in a few cases were hypothyroidism was present in the patient.
No specific cure has been discovered for homocystinuria; however, many people are treated using high doses of vitamin B (also known as pyridoxine). Slightly less than 50% respond to this treatment and need to take supplemental vitamin B for the rest of their lives. Those who do not respond require a Low-sulfur diet (especially monitoring methionine), and most will need treatment with trimethylglycine. A normal dose of folic acid supplement and occasionally adding cysteine to the diet can be helpful, as glutathione is synthesized from cysteine (so adding cysteine can be important to reduce oxidative stress).
Betaine (N,N,N-trimethylglycine) is used to reduce concentrations of homocysteine by promoting the conversion of homocysteine back to methionine, i.e., increasing flux through the re-methylation pathway independent of folate derivatives (which is mainly active in the liver and in the kidneys).The re-formed methionine is then gradually removed by incorporation into body protein. The methionine that is not converted into protein is converted to S-adenosyl-methionine which goes on to form homocysteine again. Betaine is, therefore, only effective if the quantity of methionine to be removed is small. Hence treatment includes both betaine and a diet low in methionine. In classical homocystinuria (CBS, or cystathione beta synthase deficiency), the plasma methionine level usually increases above the normal range of 30 micromoles/L and the concentrations should be monitored as potentially toxic levels (more than 400 micromoles/L) may be reached.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
Although there is currently no cure, treatment includes injections of structurally similar compound, N-Carbamoyl-L-glutamate, an analogue of N-Acetyl Glutamate. This analogue likewise activates CPS1. This treatment mitigates the intensity of the disorder.
If symptoms are detected early enough and the patient is injected with this compound, levels of severe mental retardation can be slightly lessened, but brain damage is irreversible.
Early symptoms include lethargy, vomiting, and deep coma.
Currently there is no cure for myotubular or centronuclear myopathies. Treatment often focuses on trying to maximize functional abilities and minimize medical complications, and involvement by physicians specializing in Physical Medicine and Rehabilitation, and by physical therapists and occupational therapists.
Medical management generally involves efforts to prevent pulmonary complications, since lung infections can be fatal in patients lacking the muscle strength necessary to clear secretions via coughing. Medical devices to assist with coughing help patients maintain clear airways, avoiding mucous plugs and avoiding the need for tracheostomy tubes.
Monitoring for scoliosis is also important, since weakness of the trunk muscles can lead to deviations in spinal alignment, with resultant compromise of respiratory function. Many patients with congenital myopathies may eventually require surgical treatment of scoliosis.
Although patients can receive intensive antibiotherapy and even granulocyte transfusions from healthy donors, the only current curative therapy is the hematopoietic stem cell transplant. However, progress has been made in gene therapy, an active area of research. Both foamyviral and lentiviral vectors expressing the human ITGB2 gene under the control of different promoters have been developed and have been tested so far in preclinical LAD-I models (such as CD18-deficient mice and canine leukocyte adhesion deficiency-affected dogs).
The only treatment for MWS is only symptomatic, with multidisciplinary management
One 10-year-old girl with Crigler–Najjar syndrome type I was successfully treated by liver cell transplantation.
The homozygous Gunn rat, which lacks the enzyme uridine diphosphate glucuronyltransferase (UDPGT), is an animal model for the study of Crigler–Najjar syndrome. Since only one enzyme is working improperly, gene therapy for Crigler-Najjar is a theoretical option which is being investigated.
Neonatal seizures are often controlled with phenobarbital administration. Recurrent seizures later in life are treated in the standard ways (covered in the main epilepsy article). Depending on the severity, some infants are sent home with heart and oxygen monitors that are hooked to the child with stick on electrodes to signal any seizure activity. Once a month the monitor readings are downloaded into a central location for the doctor to be able to read at a future date. This monitor is only kept as a safeguard as usually the medication wards off any seizures. Once the child is weaned off the phenobarbital, the monitor is no longer necessary.
The infant is intubated post delivery to stabilize the respiratory problems experienced. Often the skin condition becomes less severe resolving itself to flaky dry skin as the individual grows. No intervention is usually required and the condition becomes less severe as the patient grows. The dry skin symptoms can be managed with topical ointments or creams and the individual remains otherwise healthy.
There is currently no cure or standard procedure for treatment. A bone marrow transplant has been attempted on a child, but it made no improvement. Hydrocephalus may be seen in younger patients and can be relieved with surgery or by implanting a shunt to relieve pressure.
The most commonly effective treatment is clonazepam, which leads to the increased efficacy of another inhibitory neurotransmitter, GABA. There are anecdotal reports of the use of Levetiracetam in genetic and acquired hyperekplexia. During attacks of hypertonia and apnea, the limbs and head may be flexed towards the trunk in order to dissipate the symptoms. This is named the Vigevano maneuver after the doctor who invented it.
Treatment for CLSD is largely focused on treating the symptoms of the disorder, because it is still in the early stages of research. Symptomatic treatment is also the only option due to the genetic nature of the disorder. Treatment may include surgeries to correct facial and cranial dysmorphisms or therapy sessions to help alleviate behavioral abnormalities associated with the disorder.
There are no life-threatening complications after the perinatal period (around the time of birth) and the skin conditions persist but to a lesser degree of severity. Individuals have a favourable prognosis as symptoms can be managed and past the infancy stage are not life-threatening. The red skin edema improves after a three-week period but the ichthyosis scaling persists. Asthma has been recorded in some cases later on in the individual's life and sign of atopic dermatitis persist, follicular hyperkeratosis and small amounts of scaling at the scalp that goes on into adulthood but otherwise the individual continues a healthy life.