Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The treatment for hyperaldosteronism depends on the underlying cause. In people with a single benign tumor (adenoma), surgical removal (adrenalectomy) may be curative. This is usually performed laparoscopically, through several very small incisions. For people with hyperplasia of both glands, successful treatment is often achieved with spironolactone or eplerenone, drugs that block the effect of aldosterone. With its antiandrogen effect, spironolactone drug therapy may have a range of effects in males, including sometimes gynecomastia. These symptoms usually do not occur with eplerenone drug therapy.
In the absence of treatment, individuals with hyperaldosteronism often have poorly controlled high blood pressure, which may be associated with increased rates of stroke, heart disease, and kidney failure. With appropriate treatment, the prognosis is excellent.
Treatment is directed towards (1) correcting hypotension, hypovolemia, electrolyte imbalances, and metabolic acidosis; (2) improving vascular integrity, and (3) providing an immediate source of glucocorticoids. Rapid correction of hypovolemia is the first priority.
Most patients show dramatic improvement within 24 to 48 hours of appropriate fluid and glucocorticoid therapy. Over the ensuing 2 to 4 days, a gradual transition from IV fluids to oral water and food is undertaken, and maintenance mineralocorticoid and glucocorticoid therapy is initiated. Failure to make this transition smoothly should raise suspicion of insufficient glucocorticoid supplementation, concurrent endocrinopathy (e.g. hypothyroidism), or cocurrent illness (especially renal damage).
Pituitary tumors require treatment when they are causing specific symptoms, such as headaches, visual field defects or excessive hormone secretion. Transsphenoidal surgery (removal of the tumor by an operation through the nose and the sphenoidal sinuses) may, apart from addressing symptoms related to the tumor, also improve pituitary function, although the gland is sometimes damaged further as a result of the surgery. When the tumor is removed by craniotomy (opening the skull), recovery is less likely–but sometimes this is the only suitable way to approach the tumor. After surgery, it may take some time for hormone levels to change significantly. Retesting the pituitary hormone levels is therefore performed 2 to 3 months later.
Prolactinomas may respond to dopamine agonist treatment–medication that mimics the action of dopamine on the lactrotrope cells, usually bromocriptine or cabergoline. This approach may improve pituitary hormone secretion in more than half the cases, and make supplementary treatment unnecessary.
Other specific underlying causes are treated as normally. For example, hemochromatosis is treated by venesection, the regular removal of a fixed amount of blood. Eventually, this decreases the iron levels in the body and improves the function of the organs in which iron has accumulated.
In GRA, the hypersecretion of aldosterone and the accompanying hypertension are remedied when ACTH secretion is suppressed by administering glucocorticoids.
Dexamethasone, spironolactone and eplerenone have been used in treatment.
Standard therapy involves intravenous injections of glucocorticoids and large volumes of intravenous saline solution with dextrose (glucose). This treatment usually brings rapid improvement. If intravenous access is not immediately available, intramuscular injection of glucocorticoids can be used. When the patient can take fluids and medications by mouth, the amount of glucocorticoids is decreased until a maintenance dose is reached. If aldosterone is deficient, maintenance therapy also includes oral doses of fludrocortisone acetate.
Treatment for Addison's disease involves replacing the missing cortisol, sometimes in the form of hydrocortisone tablets, or prednisone tablets in a dosing regimen that mimics the physiological concentrations of cortisol. Alternatively, one-quarter as much prednisolone may be used for equal glucocorticoid effect as hydrocortisone. Treatment is usually lifelong. In addition, many patients require fludrocortisone as replacement for the missing aldosterone.
People with Addison's are often advised to carry information on them (e.g., in the form of a MedicAlert bracelet or information card) for the attention of emergency medical services personnel who might need to attend to their needs. It is also recommended that a needle, syringe, and injectable form of cortisol be carried for emergencies. People with Addison's disease are advised to increase their medication during periods of illness or when undergoing surgery or dental treatment. Immediate medical attention is needed when severe infections, vomiting, or diarrhea occur, as these conditions can precipitate an Addisonian crisis. A patient who is vomiting may require injections of hydrocortisone instead.
Most pituitary hormones can be replaced indirectly by administering the products of the effector glands: hydrocortisone (cortisol) for adrenal insufficiency, levothyroxine for hypothyroidism, testosterone for male hypogonadism, and estradiol for female hypogonadism (usually with a progestogen to inhibit unwanted effects on the uterus). Growth hormone is available in synthetic form, but needs to be administered parenterally (by injection). Antidiuretic hormone can be replaced by desmopressin (DDAVP) tablets or nose spray. Generally, the lowest dose of the replacement medication is used to restore wellbeing and correct the deranged results, as excessive doses would cause side-effects or complications. Those requiring hydrocortisone are usually instructed to increase their dose in physically stressful events such as injury, hospitalization and dental work as these are times when the normal supplementary dose may be inadequate, putting the patient at risk of adrenal crisis.
Long-term follow up by specialists in endocrinology is generally needed for people with known hypopituitarism. Apart from ensuring the right treatment is being used and at the right doses, this also provides an opportunity to deal with new symptoms and to address complications of treatment.
Difficult situations arise in deficiencies of the hypothalamus-pituitary-gonadal axis in people (both men and women) who experience infertility; infertility in hypopituitarism may be treated with subcutaneous infusions of FSH, human chorionic gonadotropin–which mimics the action of LH–and occasionally GnRH.
Treatment options depend on the type of tumor and on its size:
- Prolactinomas are most often treated with cabergoline or quinagolide (both dopamine agonists), which decrease tumor size as well as alleviates symptoms, followed by serial imaging to detect any increase in size. Treatment where the tumor is large can be with radiation therapy or surgery, and patients generally respond well. Efforts have been made to use a progesterone antagonist for the treatment of prolactinomas, but so far have not proved successful.
- Somatotrophic adenomas respond to octreotide, a long-acting somatostatin analog, in many but not all cases according to a review of the medical literature. Unlike prolactinomas, thyrotrophic adenomas characteristically respond poorly to dopamine agonist treatment.
- Surgery is a common treatment for pituitary tumors. The normal approach is Trans-sphenoidal adenectomy, which usually can remove the tumor without affecting the brain or optic nerves.
- Danazol is a steroid compound that has been labelled as an "Anterior pituitary suppressant".
Aggressiveness of therapy depends on the clinical status of the patient and the nature of the insufficiency (glucocorticoid, mineralocorticoid, or both). Many dogs and cats with primary adrenal insufficiency are presented in Addisonian crisis and require immediate, aggressive therapy. In contrast, secondary insufficiency often has a chronic course.
Hypoadrenocorticism is treated with fludrocortisone (trade name Florinef) or a monthly injection of Percorten-V (desoxycorticosterone pivalate, DOCP) and prednisolone or Zycortal. Routine blood work is necessary in the initial stages until a maintenance dose is established. Most of the medications used in the therapy of hypoadrenocorticism cause excessive thirst and urination. It is absolutely vital to provide fresh drinking water for a canine suffering from this disorder.
If the owner knows about an upcoming stressful situation (shows, traveling etc.), the animals generally need an increased dose of prednisone to help deal with the added stress. Avoidance of stress is important for dogs with hypoadrenocorticism. Physical illness also stresses the body and may mean that the medication(s) need to be adjusted during this time. Most dogs with hypoadrenocorticism have an excellent prognosis after proper stabilization and treatment.
Life long hormone replacement therapy for the hormones that are missing.
After diagnosis, it is important for patients to be continually monitored. The most common treatment for PPNAD is bilateral laparoscopic adrenalectomy; the process by which both adrenal glands are removed by a small incision.
Patients who have received this treatment will be prescribed mineralocorticoid and glucocorticoid steroids as they are no longer being naturally produced.
This is a treatment which has been used and refined since 1984.
Unilateral primary hyperaldosteronism due to an adrenocortical adenoma or adrenocarcinoma can be potentially cured surgically. Unilateral adrenalectomy is the treatment of choice for unilateral PHA. Potential complications include hemorrhage and postoperative hypokalemia. With complete removal of the tumor, prognosis is excellent.
Bilateral primary hyperaldosteronism due to hyperplasia of the zona glomerulosa or metastasized adrenocortical adenocarcinoma should be treated medically. Medical therapy is aimed at normalizing blood pressure and plasma potassium concentration. Mineralocorticoid receptor blockers, such as spironolactone, coupled with potassium supplementation are the most commonly used treatments. Specific therapy for treating high blood pressure (e.g., amlodipine), should be added if necessary.
The primary treatment of PPID is pergolide, a dopamine agonist that provides suppression to the pars intermedia in place of the dysfunctional hypothalamus. Horses should be reassessed in 30 days following the start of treatment, though evaluation of clinical signs and by baseline diagnostic testing, to ensure the appropriate dose is being prescribed. Results from that test dictate changes in dose. Horses that are responding to treatment should be retested every 6 months, including a test in the autumn when there is a seasonal increase in ACTH, to ensure their ACTH levels are appropriately suppressed during this time. Drug side effects include a transient decrease in appetite, which can be reduced by slowly increasing the dose to therapeutic levels, and by breaking up the daily dose into twice-daily administrations.
Attitude, activity levels, hyperglycemia, and increased drinking and urination are usually improved within 30 days of initiating treatment. Other clinical signs, such as hirsutism, potbellied appearance, muscle wasting, laminitic episodes, and increased predisposition to infection usually take between 30 days and 1 year to improve.
Cyproheptadine may be added to the treatment regime in horses that are inadequately responding to pergolide, but is usually only used in horses with advanced PPID on high doses of pergolide.
Surgical resection of the tumor is the treatment of first choice, either by open laparotomy or laparoscopy. Given the complexity of perioperative management, and the potential for catastrophic intra and postoperative complications, such surgery should be performed only at centers experienced in the management of this disorder. In addition to the surgical expertise that such centers can provide, they will also have the necessary endocrine and anesthesia resources. It may also be necessary to carry out adrenalectomy, a complete surgical removal of the affected adrenal gland(s).
Either surgical option requires prior treatment with the non-specific and irreversible alpha adrenoceptor blocker phenoxybenzamine or a short acting alpha antagonist (e.g. prazosin, terazosin, or doxazosin). Doing so permits the surgery to proceed while minimizing the likelihood of severe intraoperative hypertension (as might occur when the tumor is manipulated). Some authorities would recommend that a combined alpha/beta blocker such as labetalol also be given in order to slow the heart rate. Regardless, a nonselective beta-adrenergic receptor blocker such as propranolol must never be used in the presence of a pheochromocytoma. The mechanism for β-adrenoceptor blocker-associated adverse events is generally ascribed to inhibition of β2-adrenoceptor-mediated vasodilatation, leaving α1-adrenoceptor-mediated vasoconstrictor responses to catecholamines unopposed and, thus, severe and potentially refractory hypertension. However some clinical guidelines permit beta-1 blockade use together with alpha blockers during surgery for control of tachycardia.
The patient with pheochromocytoma is invariably volume depleted. In other words, the chronically elevated adrenergic state characteristic of an untreated pheochromocytoma leads to near-total inhibition of renin-angiotensin activity, resulting in excessive fluid loss in the urine and thus reduced blood volume. Hence, once the pheochromocytoma has been resected, thereby removing the major source of circulating catecholamines, a situation arises where there is both very low sympathetic activity and volume depletion. This can result in profound hypotension. Therefore, it is usually advised to "salt load" pheochromocytoma patients before their surgery. This may consist of simple interventions such as consumption of high salt food pre-operatively, direct salt replacement or through the administration of intravenous saline solution.
Most Cushing's syndrome cases are caused by corticosteroid medications, such as those used for asthma, arthritis, eczema and other inflammatory conditions. Consequently, most patients are effectively treated by carefully tapering off (and eventually stopping) the medication that causes the symptoms.
If an adrenal adenoma is identified, it may be removed by surgery. An ACTH-secreting corticotrophic pituitary adenoma should be removed after diagnosis. Regardless of the adenoma's location, most patients require steroid replacement postoperatively at least in the interim, as long-term suppression of pituitary ACTH and normal adrenal tissue does not recover immediately. Clearly, if both adrenals are removed, replacement with hydrocortisone or prednisolone is imperative.
In those patients not suited for or unwilling to undergo surgery, several drugs have been found to inhibit cortisol synthesis (e.g. ketoconazole, metyrapone) but they are of limited efficacy. Mifepristone is a powerful glucocorticoid type II receptor antagonist and, since it does not interfere with normal cortisol homeostatis type I receptor transmission, may be especially useful for treating the cognitive effects of Cushing's syndrome. However, the medication faces considerable controversy due to its use as an abortifacient. In February 2012, the FDA approved mifepristone to control high blood sugar levels (hyperglycemia) in adult patients who are not candidates for surgery, or who did not respond to prior surgery, with the warning that mifepristone should never be used by pregnant women.
Removal of the adrenals in the absence of a known tumor is occasionally performed to eliminate the production of excess cortisol. In some occasions, this removes negative feedback from a previously occult pituitary adenoma, which starts growing rapidly and produces extreme levels of ACTH, leading to hyperpigmentation. This clinical situation is known as Nelson's syndrome.
The main strategies for the management of thyroid storm are reducing production and release of thyroid hormone, reducing the effects of thyroid hormone on tissues, replacing fluid losses, and controlling temperature. Thyroid storm requires prompt treatment and hospitalization. Often, admission to the intensive care unit is needed.
Iodine
Guidelines recommend the administration of inorganic iodide (potassium iodide or Lugol's iodine) to reduce the synthesis and release of thyroid hormone. Iodine reduces the synthesis of thyroid hormone via the Wolf-Chaikoff effect. Some guidelines recommend that iodine be administered after antithyroid medications are started, because iodine is also a substrate for the synthesis of thyroid hormone, and may worsen hyperthyroidism if administered without antithyroid medications.
Antithyroid Medications
Antithyroid drugs (propylthiouracil or methimazole) are used to reduce the synthesis and release of thyroid hormone. Propylthiouracil is preferred over methimazole due to its additional effects on reducing peripheral conversion of T4 to T3, however both are commonly used.
Beta Blockers
The administration of beta-1-selective beta blockers (e.g. propranolol) is recommended to reduce the effect of circulating thyroid hormone on end organs. In addition, propanolol at high doses also reduces peripheral conversion of T4 to T3, which is the more active form of thyroid hormone. Although previously unselective beta blockers (e.g., propranolol) have been suggested to be beneficial due to their inhibitory effects on peripheral deiodinases recent research suggests them to be associated with increased mortality. Therefore, cardioselective beta blockers may be favourable.
Corticosteroids
High levels of thyroid hormone result in a hypermetabolic state, which can result in increased breakdown of cortisol, a hormone produced by the adrenal gland. This results in a state of relative adrenal insufficiency, in which the amount of cortisol is not sufficient. Guidelines recommend that corticosteroids (hydrocortisone and dexamethasone are preferred over prednisolone or methylprednisolone) be administered to all patients with thyroid storm. However, doses should be altered for each individual patient to ensure that the relative adrenal insufficiency is adequately treated while minimizing the risk of side effects.
Supportive Measures
In high fever, temperature control is achieved with fever reducers such as paracetamol/acetaminophen and external cooling measures (cool blankets, ice packs). Dehydration, which occurs due to fluid loss from sweating, diarrhea, and vomiting, is treated with frequent fluid replacement. In severe cases, mechanical ventilation may be necessary. Any suspected underlying cause is also addressed.
The first priority in suspected or confirmed pituitary apoplexy is stabilization of the circulatory system. Cortisol deficiency can cause severe low blood pressure. Depending on the severity of the illness, admission to a high dependency unit (HDU) may be required.
Treatment for acute adrenal insufficiency requires the administration of intravenous saline or dextrose solution; volumes of over two liters may be required in an adult. This is followed by the administration of hydrocortisone, which is pharmaceutical grade cortisol, intravenously or into a muscle. The drug dexamethasone has similar properties, but its use is not recommended unless it is required to reduce swelling in the brain around the area of hemorrhage. Some are well enough not to require immediate cortisol replacement; in this case, blood levels of cortisol are determined at 9:00 AM (as cortisol levels vary over the day). A level below 550 nmol/l indicates a need for replacement.
The decision on whether to surgically decompress the pituitary gland is complex and mainly dependent on the severity of visual loss and visual field defects. If visual acuity is severely reduced, there are large or worsening visual field defects, or the level of consciousness falls consistently, professional guidelines recommend that surgery is performed. Most commonly, operations on the pituitary gland are performed through transsphenoidal surgery. In this procedure, surgical instruments are passed through the nose towards the sphenoid bone, which is opened to give access to the cavity that contains the pituitary gland. Surgery is most likely to improve vision if there was some remaining vision before surgery, and if surgery is undertaken within a week of the onset of symptoms.
Those with relatively mild visual field loss or double vision only may be managed conservatively, with close observation of the level of consciousness, visual fields, and results of routine blood tests. If there is any deterioration, or expected spontaneous improvement does not occur, surgical intervention may still be indicated. If the apoplexy occurred in a prolactin-secreting tumor, this may respond to dopamine agonist treatment.
After recovery, people who have had pituitary apoplexy require follow-up by an endocrinologist to monitor for long-term consequences. MRI scans are performed 3–6 months after the initial episode and subsequently on an annual basis. If after surgery some tumor tissue remains, this may respond to medication, further surgery, or radiation therapy with a "gamma knife".
The first-line treatment of Cushing's disease is surgical resection of ACTH-secreting pituitary adenoma; this surgery involves removal of the tumor via transsphenoidal surgery (TSS).
There are two possible options for access to sphenoidal sinus including of endonosal approach (through the nostril) or sublabial approach (through an incision under the upper lip); many factors such as the size of nostril, the size of the lesion, and the preferences of the surgeon cause the selection of one access route over the other.
Some tumors do not contain a discrete border between tumor and pituitary gland; therefore, careful sectioning through pituitary gland may be required to identify the location of tumor. The probability of successful resection is higher in patients where the tumor was identified at initial surgery in comparison to patients where no tumor was found initially; the overall remission rates in patients with microadenomas undergoing TSS are in range of 65%-90%, and the remission rate in patients with macroadenomas are lower than 65%. patients with persistent disease after initial surgery are treated with repeated pituitary surgery as soon as the active persistent disease is evident; however, reoperation has lower success rate and increases the risk of pituitary insufficiency.
Pituitary radiation therapy is another option for treatment of postoperative persisting hypercortisolemia following unsuccessful transsphenoidal surgery. External-beam pituitary RT is more effective treatment for pediatric CD in children with cure rates of 80%-88%. Hypopituitarism specifically growth hormone deficiency has been reported as the only most common late morbidity of this treatment; GHD has been reported in 36% and 68% of the patients undergoing post pituitary RT for Cushing's disease.
Bilateral adrenalectomy is another treatment which provides immediate reduction of cortisol level and control of hypercortisolism. However, it requires education of patients, because lifelong glucocorticoid and mineralocorticoid replacement therapy is needed for these patients. One of the major complications of this treatment is progression of Nelson's syndrome which is caused by enhance level of tumor growth and ACTH secretion post adrenalectomy in 8%-29% of patients with CD.
During post surgical recovery, patients collect 24-hour urine sample and blood sample for detecting the level of cortisol with the purpose of cure test; level of cortisol near the detection limit assay, corresponds to cure. Hormonal replacement such as steroid is given to patients because of steroid withdrawal. After the completion of collecting urine and blood samples, patients are asked to switch to glucocorticoid such as prednisone to decrease symptoms associated with adrenal withdrawal.
A study of 3,525 cases of TSS for Cushing's disease in the nationally representative
sample of US hospitals between 1993 and 2002 was conducted and revealed the following results: the in-hospital mortality rate was 0.7%; the complication rate was 42.1%. Diabetes insipidus (15%), fluid and electrolyte abnormalities (12.5%), and neurological deficits (5.6%) were the most common complications reported. The analyses of the study show that complications were more likely in patients with pre-operative comorbidities. Patients older than 64 years were more likely to have an adverse outcome and prolonged hospital stay. Women were 0.3 times less likely to have adverse outcomes in comparison to men.
The main methods of management in involve exercise and diet change, in addition to treatment of PPID. The primary goal is reduction of weight in an obese animal. Diet changes include limiting pasture access and reducing or eliminating grain. Obese animals are often best maintained on a diet consisting ration balancer and hay, fed at 1.5% body weight and decreased if needed. Feed should be selected based on low non-structural carbohydrate levels. Hay NSC levels may be reduced by soaking it in cold water for 30 minutes.
Exercise is increased in non-laminitic horses. Animals resistant to weight loss, despite diet and exercise changes, can be placed on levothyroxine to increase metabolism. Metformin can also be used to reduce glucose absorption through the intestinal tract.
Through multiple advancements within the medical field, care-givers have been able to stray away from utilizing bilateral adrenalectomy as the treatment for Cushing's disease. This has decreased the risk of patients presenting with Nelson's syndrome. Alternative treatments for Nelson's syndrome have been discovered. The most utilized technique for Nelson's syndrome has been transsphenoidal surgery. In addition, pharmacotherapy, radiotherapy, and radiosurgery have been utilized accompanying a surgical procedure. Pharmalogical drugs can also be given accompanying a transsphenoidal surgery including the following: pasireotide, temozolomide and octreotide. Within rats/mice, rosiglitazone has been an effective measure, however this has not been discovered in humans yet.
XX females with lipoid CAH may need estrogen replacement at or after puberty. Active intervention has been used to preserve the possibility of fertility and conception in lipoid CAH females. In a case report in 2009, a woman with late onset lipoid CAH due to StAR deficiency underwent hormone replacement therapy in combination with an assisted fertility technique, intracytoplasmic sperm injection. This led to ovulation and with implantation of the in vitro fertilized egg, a successful birth.
Some of the childhood management issues are similar those of 21-hydroxylase deficiency:
- Replacing mineralocorticoid with fludrocortisone
- Suppressing DHEA and replacing cortisol with glucocorticoid
- Providing extra glucocorticoid for stress
- Close monitoring and perhaps other adjunctive measures to optimize growth
- Deciding whether surgical repair of virilized female genitalia is warranted
However, unlike 21-hydroxylase CAH, children with 3β-HSD CAH may be unable to produce adequate amounts of testosterone (boys) or estradiol (girls) to effect normal pubertal changes. Replacement testosterone or estrogen and progesterone can be initiated at adolescence and continued throughout adult life. Fertility may be impaired by the difficulty of providing appropriate sex hormone levels in the gonads even though the basic anatomy is present.
The only curative treatment is complete surgical excision of the tumor, which can be performed even in the case of invasion into large blood vessels, such as the renal vein or inferior vena cava. The 5-year survival rate after successful surgery is 50–60%, but unfortunately, a large percentage of patients are not surgical candidates. Radiation therapy and radiofrequency ablation may be used for palliation in patients who are not surgical candidates.
Chemotherapy regimens typically include the drug mitotane, an inhibitor of steroid synthesis which is toxic to cells of the adrenal cortex, as well as standard cytotoxic drugs. A retrospective analysis showed a survival benefit for mitotane in addition to surgery when compared to surgery alone.
The two most common regimens are cisplatin, doxorubicin, etoposide + mitotane and streptozotocin + mitotane. It is unknown which regimen is better. Researchers at Uppsala University Hospital initiated a collaboration between adrenocortical cancer specialists in Europe, USA and Australia, to conduct the first ever randomized controlled trial in adrenocortical cancer (FIRM-ACT study), comparing these two regimens.
Diagnosis of cortisone reductase deficiency is done through analysis of cortisol to cortisone metabolite levels in blood samples. As of now, there is no treatment for cortisone reductase deficiency. Shots of cortisol are quickly metabolised into cortisone by the dysregulated 11β-HSD1 enzyme; however, symptoms can be treated. Treatment of hyperandroginism can be done through prescription of antiandrogens. They do so by inhibiting the release of gonadotropin and luteinizing hormone, both hormones in the pituitary, responsible for the production of testosterone.
Acute adrenal insufficiency is a medical emergency and needs to be treated with injectable hydrocortisone and fluid support.