Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The main goals of treatment are to decrease the risk of rebleeding within the eye, corneal blood staining, and atrophy of the optic nerve. Small hyphemas can usually be treated on an outpatient basis. Most treatment plans consist of elevating the head at night, wearing a patch and shield, and controlling any increase in intraocular pressure. Surgery may be necessary for non-resolving hyphemas, or hyphaemas that are associated with high pressure that does not respond to medication. Surgery can be effective for cleaning out the anterior chamber and preventing corneal blood staining.
Elevation of the head of the bed by approximately 45 degrees (so that the hyphema can settle out inferiorly and avoid obstruction of vision, as well as to facilitate resolution). Bedrest may be considered, although evidence suggests that it does not improve outcomes. Wearing of an eye shield at night time (to prevent accidental rubbing of the eyes during sleep, which can precipitate a rebleed). An eye patch should be worn throughout the day to protect the injured eye.
If pain management is necessary, acetaminophen can be used. Aspirin and ibuprofen should be avoided, because they interfere with platelets' ability to form a clot and consequently increase the risk of additional bleeding. Sedation is not usually necessary for patients with hyphema. It is controversial amongst ophthalmologists whether a steroid medication or a dilating eye drop (mydriatic) should be used in treatment of hyphema. Steroids aim to reduce the amount of inflammation, but also cause side effects. Dilating drops aim to increase comfort from the traumatized iris as well as reduce bleeding, but can also cause the pupil to be fixed in a dilated state via posterior synechiae (adhesions).
Aminocaproic or tranexamic acids are often prescribed for hyphema. Although these medications actually cause hyphemas to take longer to clear, they reduce the risk of rebleeding and its associated complications. Tranexamic and aminocaproic acids inhibit the conversion of plasminogen to plasmin, plasmin being the agent of fibrin breakdown in blood clots. Keeping the clots intact allows time for the vessels to heal properly and avert a secondary bleed.
Intraocular pressure can be lowered with medication, usually eye drops. Several classes of medications are used to treat glaucoma, with several medications in each class.
Each of these medicines may have local and systemic side effects. Adherence to medication protocol can be confusing and expensive; if side effects occur, the patient must be willing either to tolerate them or to communicate with the treating physician to improve the drug regimen. Initially, glaucoma drops may reasonably be started in either one or in both eyes. Wiping the eye with an absorbent pad after the administration of eye drops may result in fewer adverse effects, like the growth of eyelashes and hyperpigmentation in the eyelid.
Poor compliance with medications and follow-up visits is a major reason for vision loss in glaucoma patients. A 2003 study of patients in an HMO found half failed to fill their prescriptions the first time, and one-fourth failed to refill their prescriptions a second time. Patient education and communication must be ongoing to sustain successful treatment plans for this lifelong disease with no early symptoms.
The possible neuroprotective effects of various topical and systemic medications are also being investigated.
- Prostaglandin analogs, such as latanoprost, bimatoprost and travoprost, increase uveoscleral outflow of aqueous humor. Bimatoprost also increases trabecular outflow.
- Topical beta-adrenergic receptor antagonists, such as timolol, levobunolol, and betaxolol, decrease aqueous humor production by the epithelium of the ciliary body.
- Alpha2-adrenergic agonists, such as brimonidine and apraclonidine, work by a dual mechanism, decreasing aqueous humor production and increasing uveoscleral outflow.
- Less-selective alpha agonists, such as epinephrine, decrease aqueous humor production through vasoconstriction of ciliary body blood vessels, useful only in open-angle glaucoma. Epinephrine's mydriatic effect, however, renders it unsuitable for closed-angle glaucoma due to further narrowing of the uveoscleral outflow (i.e. further closure of trabecular meshwork, which is responsible for absorption of aqueous humor).
- Miotic agents (parasympathomimetics), such as pilocarpine, work by contraction of the ciliary muscle, opening the trabecular meshwork and allowing increased outflow of the aqueous humour. Echothiophate, an acetylcholinesterase inhibitor, is used in chronic glaucoma.
- Carbonic anhydrase inhibitors, such as dorzolamide, brinzolamide, and acetazolamide, lower secretion of aqueous humor by inhibiting carbonic anhydrase in the ciliary body.
Argon laser trabeculoplasty (ALT) may be used to treat open-angle glaucoma, but this is a temporary solution, not a cure. A 50-μm argon laser spot is aimed at the trabecular meshwork to stimulate the opening of the mesh to allow more outflow of aqueous fluid. Usually, half of the angle is treated at a time. Traditional laser trabeculoplasty uses a thermal argon laser in an argon laser trabeculoplasty procedure.
A newer type of laser trabeculoplasty uses a "cold" (nonthermal) laser to stimulate drainage in the trabecular meshwork. This newer procedure, selective laser trabeculoplasty (SLT), uses a 532-nm, frequency-doubled, Q-switched , which selectively targets melanin pigment in the trabecular meshwork cells. Studies show SLT is as effective as ALT at lowering eye pressure. In addition, SLT may be repeated three to four times, whereas ALT can usually be repeated only once.
Nd:YAG laser peripheral iridotomy (LPI) may be used in patients susceptible to or affected by angle closure glaucoma or pigment dispersion syndrome. During laser iridotomy, laser energy is used to make a small, full-thickness opening in the iris to equalize the pressure between the front and back of the iris, thus correcting any abnormal bulging of the iris. In people with narrow angles, this can uncover the trabecular meshwork. In some cases of intermittent or short-term angle closure, this may lower the eye pressure. Laser iridotomy reduces the risk of developing an attack of acute angle closure. In most cases, it also reduces the risk of developing chronic angle closure or of adhesions of the iris to the trabecular meshwork.
Diode laser cycloablation lowers IOP by reducing aqueous secretion by destroying secretory ciliary epithelium.
Mydriatic/cycloplegic agents, such as topical homatropine, which is similar in action to atropine, are useful in breaking and preventing the formation of posterior synechia by keeping the iris dilated and away from the crystalline lens. Dilation of the pupil in an eye with the synechia can cause the pupil to take an irregular, non-circular shape (Dyscoria) as shown in the photograph. If the pupil can be fully dilated during the treatment of iritis, the prognosis for recovery from synechia is good. This is a treatable status.
To subdue the inflammation, use topical corticosteroids. If the intra-ocular pressure is elevated then use a PGA such as Travatan Z.
Careful eye examination by an ophthalmologist or optometrist is critical for diagnosing symptomatic VMA. Imaging technologies such as optical coherence tomography (OCT) have significantly improved the accuracy of diagnosing symptomatic VMA.
A new FDA approved drug was released on the market late 2013. Jetrea (Brand name) or Ocriplasmin (Generic name) is the first drug of its kind used to treat vitreomacular adhension.
Mechanism of Action: Ocriplasmin is a truncated human plasmin with proteolytic activity against protein components of the vitreous body and vitreretinal interface. It dissolves the protein matrix responsible for the vitreomacular adhesion.
Adverse drug reactions: Decreased vision, potential for lens sublaxation, dyschromatopsia (yellow vision), eye pain, floaters, blurred vision.
New Drug comparison Rating gave Jetea a 5 indicating an important advance.
Previously, no recommended treatment was available for the patient with mild symptomatic VMA. In symptomatic VMA patients with more significant vision loss, the standard of care is pars plana vitrectomy (PPV), which involves surgically removing the vitreous from the eye, thereby surgically releasing the symptomatic VMA. In other words, vitrectomy induces PVD to release the traction/adhesion on the retina. An estimated 850,000 vitrectomy procedures are performed globally on an annual basis with 250,000 in the United States alone.
A standard PPV procedure can lead to serious complications including small-gauge PPV. Complications can include retinal detachment, retinal tears, endophthalmitis, and postoperative cataract formation. Additionally, PPV may result in incomplete separation, and it may potentially leave a nidus for vasoactive and vasoproliferative substances, or it may induce development of fibrovascular membranes. As with any invasive surgical procedure, PPV introduces trauma to the vitreous and surrounding tissue.
There are data showing that nonsurgical induction of PVD using ocriplasmin (a recombinant protease with activity against fibronectin and laminin) can offer the benefits of successful PVD while eliminating the risks associated with a surgical procedure, i.e. vitrectomy. Pharmacologic vitreolysis is an improvement over invasive surgery as it induces complete separation, creates a more physiologic state of the vitreomacular interface, prevents the development of fibrovascular membranes, is less traumatic to the vitreous, and is potentially prophylactic. As of 2012, ThromboGenics is still developing the ocriplasmin biological agent. Ocriplasmin is approved recently under the name Jetrea for use in the United States by the FDA.view.
An experimental test of injections of perfluoropropane (CF) on 15 symptomatic eyes of 14 patients showed that vitreomacular traction resolved in 6 eyes within 1 month and resolved in 3 more eyes within 6 months.
If caught early, the neovascularization can be reversed with prompt pan retinal photocoagulation (PRP), or injection of anti-VEGF medications with subsequent PRP. The injection blocks the direct effect of VEGF and acts more quickly but will wear off in about 6 weeks. PRP has a slower onset of action but can last permanently. Once the neovascularization has been longstanding, the new vessels recruit fibrous tissue, and as this forms and contracts, the angle can be permanently damaged, and will not respond to treatment. If this occurs, then surgical intervention is required to reduce the pressure (such as a glaucoma drainage implant)
Patients usually do not require treatment due to benign nature of the disease. In case cataract develops patients generally do well with cataract surgery.
Colobomas of the iris may be treated in a number of ways. A simple cosmetic solution is a specialized cosmetic contact lens with an artificial pupil aperture. Surgical repair of the iris defect is also possible. Surgeons can close the defect by stitching in some cases. More recently artificial iris prosthetic devices such as the Human Optics artificial iris have been used successfully by specialist surgeons. This device cannot be used if the natural lens is in place and is not suitable for children. Suture repair is a better option where the lens is still present.
Vision can be improved with glasses, contact lenses or even laser eye surgery but may be limited if the retina is affected or there is amblyopia.
Penetrating karatoplasty and endothelial keratoplasty can be used as treatments for severe cases of ICE [2,8]. Because glaucoma and elevated intraocular pressure are often present in ICE patients, long term follow up may be needed to ensure adequate intraocular pressures are maintained [2,7]
While the vast majority of hyphemas resolve on their own without issue, sometimes complications occur. Traumatic hyphema may lead to increased intraocular pressure, peripheral anterior synechiae, atrophy of the optic nerve, staining of the cornea with blood, re-bleeding, and impaired accommodation.
Secondary hemorrhage, or rebleeding of the hyphema, is thought to worsen outcomes in terms of visual function. Rebleeding occurs in 4-35% of hyphema cases and is a risk factor for glaucoma.
Enucleation (surgical removal of the eye) is the treatment of choice for large ciliary body melanomas. Small or medium sized tumors may be treated by an "iridocyclectomy". Radiotherapy may be appropriate in selected cases.
Pigment dispersion syndrome (PDS) is an affliction of the eye that can lead to a form of glaucoma known as pigmentary glaucoma. It takes place when pigment cells slough off from the back of the iris and float around in the aqueous humor. Over time, these pigment cells can accumulate in the anterior chamber in such a way that it can begin to clog the trabecular meshwork (the major site of aqueous humour drainage), which can in turn prevent the aqueous humour from draining and therefore increases the pressure inside the eye. With PDS, the intraocular pressure tends to spike at times and then can return to normal. Exercise has been shown to contribute to spikes in pressure as well. When the pressure is great enough to cause damage to the optic nerve, this is called pigmentary glaucoma. As with all types of glaucoma, when damage happens to the optic nerve fibers, the vision loss that occurs is irreversible and painless.
This condition is rare, but occurs most often in Caucasians, particularly men, and the age of onset is relatively low: mid 20s to 40s. As the crystalline lens hardens with age, the lens zonules pull away from the iris and the syndrome lessens and stops. Most sufferers are nearsighted.
There is no cure yet, but pigmentary glaucoma can be managed with eye drops or treated with simple surgeries. One of the surgeries is the YAG laser procedure in which a laser is used to break up the pigment clogs, and reduce pressure. If caught early and treated, chances of glaucoma are greatly reduced. Sufferers are often advised not to engage in high-impact sports such as long-distance running or martial arts, as strong impacts can cause more pigment cells to slough off.
A 2016 Cochrane Review sought to determine the effectiveness of YAG laser iridotomy versus no laser iridotomy for pigment dispersion syndrome and pigmentary glaucoma, in 195 participants, across five studies. No clear benefits in preventing loss of visual field were found for eyes treated with peripheral laser iridotomy. There was weak evidence suggesting that laser iridotomy could be more effective in lowering intraocular pressure in eyes versus no treatment.
People with hemeralopia may benefit from sunglasses. Wherever possible, environmental illumination should be adjusted to comfortable level. Light-filtering lenses appear to help in people reporting photophobia.
Otherwise, treatment relies on identifying and treating any underlying disorder.
A synechia is an eye condition where the iris adheres to either the cornea (i.e. "anterior synechia") or lens (i.e. "posterior synechia"). Synechiae can be caused by ocular trauma, iritis or iridocyclitis and may lead to certain types of glaucoma. It is sometimes visible on careful examination but usually more easily through an ophthalmoscope or slit-lamp.
Anterior synechia causes closed angle glaucoma, which means that the iris closes the drainage way of aqueous humour which in turn raises the intraocular pressure. Posterior synechia also cause glaucoma, but with a different mechanism. In posterior synechia, the iris adheres to the lens, blocking the flow of aqueous humor from the posterior chamber to the anterior chamber. This blocked drainage raises the intraocular pressure.
Since the condition appears to slowly subside or diminish on its own, there are no specific treatments for this condition available.
Some precautions include regular visits to an ophthalmologist or optometrist and general testing of the pupil and internal eye through fundamental examinations (listed below). The examinations can determine if any of the muscles of the eye or retina, which is linked to the pupil, have any problems that could relate to the tadpole pupil condition.
It is the name given to the localised bulge in limbal area, lined by the root of the iris. It results due to ectasia of weak scar tissue formed at the limbus, following healing of a perforating injury or a peripheral corneal ulcer. There may be associated secondary angle closure glaucoma, may cause progression of the bulge if not treated. Defective vision occurs due to marked corneal astigmatism. Treatment consists of localised staphylectomy under heavy doses of oral steroids.
A mydriatic is an agent that induces dilation of the pupil. Drugs such as tropicamide are used in medicine to permit examination of the retina and other deep structures of the eye, and also to reduce painful ciliary muscle spasm (see cycloplegia). Phenylephrine (e.g. Cyclomydril) is used if strong mydriasis is needed for a surgical intervention. One effect of administration of a mydriatic is intolerance to bright light (photophobia). Purposefully-induced mydriasis via mydriatics is also used as a diagnostic test for Horner's syndrome.
The disease is chronic and often progresses slowly. Prognosis is generally poor when associated with glaucoma [1,2].
With posterior lens luxation, the lens falls back into the vitreous humour and lies on the floor of the eye. This type causes fewer problems than anterior lens luxation, although glaucoma or ocular inflammation may occur. Surgery is used to treat dogs with significant symptoms. Removal of the lens before it moves to the anterior chamber may prevent secondary glaucoma.
A staphyloma is an abnormal protrusion of the uveal tissue through a weak point in the eyeball. The protrusion is generally black in colour, due to the inner layers of the eye. It occurs due to weakening of outer layer of eye (cornea or sclera) by an inflammatory or degenerative condition.
It may be of 5 types, depending on the location on the eyeball ("bulbus oculi").
The usual treatment of a standardised Adie syndrome is to prescribe reading glasses to correct for impairment of the eye(s). Pilocarpine drops may be administered as a treatment as well as a diagnostic measure. Thoracic sympathectomy is the definitive treatment of diaphoresis, if the condition is not treatable by drug therapy.
Plateau iris is a medical condition of the eye resulting from pushing of peripheral part of iris forward, by the large or anteriorly placed ciliary body causing angle closer glaucoma.
http://image.slidesharecdn.com/gonioscopy-140211072931-phpapp01/95/gonioscopy-70-638.jpg?cb=1392103893
this configuration is usually corrected by iridectomy.
if the glaucoma persists even after iridectomy then it is called plateau iris syndrome, this is managed by miotics or laser peripheral iridoplasty
Intraoperative floppy iris syndrome (IFIS) is a complication that may occur during cataract extraction in certain patients. This syndrome is characterized by a flaccid iris which billows in response to ordinary intraocular fluid currents, a propensity for this floppy iris to prolapse towards the area of cataract extraction during surgery, and progressive intraoperative pupil constriction despite standard procedures to prevent this.
IFIS has been associated with tamsulosin (e.g., Flomax), a medication widely prescribed for urinary symptoms associated with benign prostatic hyperplasia (BPH). Tamsulosin is a selective alpha blocker that works by relaxing the bladder and prostatic smooth muscle. As such, it also relaxes the iris dilator muscle by binding to its postsynaptic nerve endings. Even if a patient has only taken tamsulosin once in their life, that dose is enough to cause IFIS during cataract extraction indefinitely. Various alpha-blockers are associated with IFIS, but tamsulosin has a stronger association than the others.
A joint statement of two ophthalmologic societies states that "the other major class of drugs to treat BPH — 5-alpha reductase inhibitors — do not appear to cause IFIS to any significant degree." 5-ARIs include finasteride, a medication typically used as first line therapy for BPH and androgenic alopecia. The medication is also associated with cataract formation.
IFIS may also be associated with other causes of small pupil like synechiae, pseudoexfoliation and other medications (used for conditions such as glaucoma, diabetes and high blood pressure). IFIS does not usually cause significant changes in postoperative outcomes. Patients may experience more pain, a longer recovery period, and less improvement in visual acuity than a patient with an uncomplicated cataract removal.
The severity of the condition is not linked to the duration of tamsulosin intake.
Vitreomacular adhesion (VMA) is a human medical condition where the vitreous gel (or simply vitreous) of the human eye adheres to the retina in an abnormally strong manner. As the eye ages, it is common for the vitreous to separate from the retina. But if this separation is not complete, i.e. there is still an adhesion, this can create pulling forces on the retina that may result in subsequent loss or distortion of vision. The adhesion in of itself is not dangerous, but the resulting pathological vitreomacular traction (VMT) can cause severe ocular damage.
The current standard of care for treating these adhesions is pars plana vitrectomy (PPV), which involves surgically removing the vitreous from the eye. A biological agent for non-invasive treatment of adhesions called ocriplasmin has been approved by the FDA on Oct 17 2012.
Corneal and Retinal Topography: computerized tests that maps the surface of the retina, or the curvature of the cornea.
Fluorescein Angiogram: evaluation of blood circulation in the retina.
Dilated Pupillary Exam: special drops expand the pupil, which then allows doctors to examine the retina.
Slit-Lamp Exam: By shining a small beam of light in the eye, eye doctors can diagnose cataracts, glaucoma, retinal detachment, macular degeneration, injuries to the cornea, and dry eye disease.
Ultrasound: Provides a picture of the eye’s internal structure, and can evaluate ocular tumors, or the retina if its suffering from cataracts or hemorrhages.