Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Lemierre's syndrome is primarily treated with antibiotics given intravenously. "Fusobacterium necrophorum" is generally highly susceptible to beta-lactam antibiotics, metronidazole, clindamycin and third generation cephalosporins while the other fusobacteria have varying degrees of resistance to beta-lactams and clindamycin. Additionally, there may exist a co-infection by another bacterium. For these reasons is often advised not to use monotherapy in treating Lemierre's syndrome. Penicillin and penicillin-derived antibiotics can thus be combined with a beta-lactamase inhibitor such as clavulanic acid or with metronidazole. Clindamycin can be given as monotherapy.
If antibiotic therapy does not improve the clinical picture, it may prove useful to drain any abscesses and/or perform ligation of the internal jugular vein where the antibiotic can not penetrate.
There is no evidence to opt for or against the use of anticoagulation therapy. The low incidence of Lemierre's syndrome has not made it possible to set up clinical trials to study the disease.
The disease can often be untreatable, especially if other negative factors occur, i.e. various diseases occurring at the same time, such as meningitis, pneumonia.
The infection is frequently penicillin resistant. There are a number of antibiotics options including amoxicillin/clavulanate, clindamycin, or metronidazole in combination with benzylpenicillin (penicillin G) or penicillin V. Piperacillin/tazobactam may also be used.
Treatment is by removing the pus, antibiotics, sufficient fluids, and pain medication. Steroids may also be useful. Admission to hospital is generally not needed.
The treatment of choice is penicillin, and the duration of treatment is around 10 days. Antibiotic therapy (using injected penicillin) has been shown to reduce the risk of acute rheumatic fever. In individuals with a penicillin allergy, erythromycin, other macrolides, and cephalosporins have been shown to be effective treatments.
Treatment with ampicillin/sulbactam, amoxicillin/clavulanic acid, or clindamycin is appropriate if deep oropharyngeal abscesses are present, in conjunction with aspiration or drainage. In cases of streptococcal toxic shock syndrome, treatment consists of penicillin and clindamycin, given with intravenous immunoglobulin.
For toxic shock syndrome and necrotizing fasciitis, high-dose penicillin and clindamycin are used. Additionally, for necrotizing fasciitis, surgery is often needed to remove damaged tissue and stop the spread of the infection.
No instance of penicillin resistance has been reported to date, although since 1985, many reports of penicillin tolerance have been made. The reason for the failure of penicillin to treat "S. pyogenes" is most commonly patient noncompliance, but in cases where patients have been compliant with their antibiotic regimen, and treatment failure still occurs, another course of antibiotic treatment with cephalosporins is common.
Pain medication such as NSAIDs and paracetamol (acetaminophen) helps in the management of pain associated with strep throat. Viscous lidocaine may also be useful. While steroids may help with the pain, they are not routinely recommended. Aspirin may be used in adults but is not recommended in children due to the risk of Reye syndrome.
Untreated streptococcal pharyngitis usually resolves within a few days. Treatment with antibiotics shortens the duration of the acute illness by about 16 hours. The primary reason for treatment with antibiotics is to reduce the risk of complications such as rheumatic fever and retropharyngeal abscesses; antibiotics are effective if given within 9 days of the onset of symptoms.
"S. pyogenes" infections are best prevented through effective hand hygiene. No vaccines are currently available to protect against "S. pyogenes" infection, although research has been conducted into the development of one. Difficulties in developing a vaccine include the wide variety of strains of "S. pyogenes" present in the environment and the large amount of time and number of people that will be needed for appropriate trials for safety and efficacy of the vaccine.
When properly diagnosed, the mortality of Lemierre's syndrome is about 4.6%. Since this disease is not well known and often remains undiagnosed, mortality might be much higher.
Chronic cases may be treated with tonsillectomy (surgical removal of tonsils) as a choice for treatment. Children have had only a modest benefit from tonsillectomy for chronic cases of tonsillitis.
If the tonsillitis is caused by group A streptococcus, then antibiotics are useful, with penicillin or amoxicillin being primary choices. Cephalosporins and macrolides are considered good alternatives to penicillin in the acute setting. A macrolide such as erythromycin is used for people allergic to penicillin. Individuals who fail penicillin therapy may respond to treatment effective against beta-lactamase producing bacteria such as clindamycin or amoxicillin-clavulanate. Aerobic and anaerobic beta lactamase producing bacteria that reside in the tonsillar tissues can "shield" group A streptococcus from penicillins.
Prescribing antibiotics for laryngitis is not suggested practice. The antibiotics penicillin V and erythromycin are not effective for treating acute laryngitis. Erythromycin may improve voice disturbances after one week and cough after two weeks, however any modest subjective benefit is not greater than the adverse effects, cost, and the risk of bacteria developing resistance to the antibiotics. Health authorities have been strongly encouraging physicians to decrease the prescribing of antibiotics to treat common upper respiratory tract infections because antibiotic usage does not significantly reduce recovery time for these viral illnesses. Decreased antibiotic usage could also have prevented drug resistant bacteria. Some have advocated a delayed antibiotic approach to treating URIs which seeks to reduce the consumption of antibiotics while attempting to maintain patient satisfaction. Most studies show no difference in improvement of symptoms between those treated with antibiotics right away and those with delayed prescriptions. Most studies also show no difference in patient satisfaction, patient complications, symptoms between delayed and no antibiotics. A strategy of "no antibiotics" results in even less antibiotic use than a strategy of "delayed antibiotics".
Most sinusitis cases are caused by viruses and resolve without antibiotics. However, if symptoms do not resolve within 10 days, amoxicillin is a reasonable antibiotic to use first for treatment with amoxicillin/clavulanate being indicated when the person's symptoms do not improve after 7 days on amoxicillin alone. A 2012 Cochrane review, however, found only a small benefit between 7 and 14 days, and could not recommend the practice when compared to potential complications and risk of developing resistance. Antibiotics are specifically not recommended in those with mild / moderate disease during the first week of infection due to risk of adverse effects, antibiotic resistance, and cost.
Fluoroquinolones, and a newer macrolide antibiotic such as clarithromycin or a tetracycline like doxycycline, are used in those who have severe allergies to penicillins. Because of increasing resistance to amoxicillin the 2012 guideline of the Infectious Diseases Society of America recommends amoxicillin-clavulanate as the initial treatment of choice for bacterial sinusitis. The guidelines also recommend against other commonly used antibiotics, including azithromycin, clarithromycin, and trimethoprim/sulfamethoxazole, because of growing antibiotic resistance. The FDA recommends against the use of fluoroquinolones when other options are available due to higher risks of serious side effects.
A short-course (3–7 days) of antibiotics seems to be just as effective as the typical longer-course (10–14 days) of antibiotics for those with clinically diagnosed acute bacterial sinusitis without any other severe disease or complicating factors. The IDSA guideline suggest five to seven days of antibiotics is long enough to treat a bacterial infection without encouraging resistance. The guidelines still recommend children receive antibiotic treatment for ten days to two weeks.
According to a Cochrane review, single oral dose of nasal decongestant in the common cold is modestly effective for the short term relief of congestion in adults; however, "there is insufficient data on the use of decongestants in children." Therefore, decongestants are not recommended for use in children under 12 years of age with the common cold. Oral decongestants are also contraindicated in patients with hypertension, coronary artery disease, and history of bleeding strokes.
For unconfirmed acute sinusitis, intranasal corticosteroids have not been found to be better than a placebo either alone or in combination with antibiotics. For cases confirmed by radiology or nasal endoscopy, treatment with corticosteroids alone or in combination with antibiotics is supported. The benefit, however, is small.
There is only limited evidence to support short treatment with oral corticosteroids for chronic rhinosinusitis with nasal polyps.
The majority of time treatment is symptomatic. Specific treatments are effective for bacterial, fungal, and herpes simplex infections.
Paracetamol (acetaminophen) and NSAIDs, such as ibuprofen, may be used to reduce fever and pain. Prednisone, a corticosteroid, while used to try to reduce throat pain or enlarged tonsils, remains controversial due to the lack of evidence that it is effective and the potential for side effects. Intravenous corticosteroids, usually hydrocortisone or dexamethasone, are not recommended for routine use but may be useful if there is a risk of airway obstruction, a very low platelet count, or hemolytic anemia.
There is little evidence to support the use of antivirals such as aciclovir and valacyclovir although they may reduce initial viral shedding. Although antivirals are not recommended for people with simple infectious mononucleosis, they may be useful (in conjunction with steroids) in the management of severe EBV manifestations, such as EBV meningitis, peripheral neuritis, hepatitis, or hematologic complications.
Although antibiotics exert no antiviral action they may be indicated to treat bacterial secondary infections of the throat, such as with streptococcus (strep throat). However, ampicillin and amoxicillin are not recommended during acute Epstein–Barr virus infection as a diffuse rash may develop.
Gargling salt water is often suggested but evidence looking at its usefulness is lacking. Alternative medicines are promoted and used for the treatment of sore throats. However, they are poorly supported by evidence.
Infectious mononucleosis is generally self-limiting, so only symptomatic or supportive treatments are used. The need for rest and return to usual activities after the acute phase of the infection may reasonably be based on the person's general energy levels. Nevertheless, in an effort to decrease the risk of splenic rupture experts advise avoidance of contact sports and other heavy physical activity, especially when involving increased abdominal pressure or the Valsalva maneuver (as in rowing or weight training), for at least the first 3–4 weeks of illness or until enlargement of the spleen has resolved, as determined by a treating physician.
Corticosteroids, such as dexamethasone and budesonide, have been shown to improve outcomes in children with all severities of croup. Significant relief is obtained as early as six hours after administration. While effective when given by injection, or by inhalation, giving the medication by mouth is preferred. A single dose is usually all that is required, and is generally considered to be quite safe. Dexamethasone at doses of 0.15, 0.3 and 0.6 mg/kg appear to be all equally effective.
While other treatments for croup have been studied, none have sufficient evidence to support their use. Inhalation of hot steam or humidified air is a traditional self-care treatment, but clinical studies have failed to show effectiveness and currently it is rarely used. The use of cough medicines, which usually contain dextromethorphan or guaifenesin, are also discouraged. There is tentative evidence that breathing heliox (a mixture of helium and oxygen) to decrease the work of breathing is useful in those with severe disease. Since croup is usually a viral disease, antibiotics are not used unless secondary bacterial infection is suspected. In cases of possible secondary bacterial infection, the antibiotics vancomycin and cefotaxime are recommended. In severe cases associated with influenza A or B, the antiviral neuraminidase inhibitors may be administered.
Most infections are mild and require no therapy or only symptomatic treatment. Because there is no virus-specific therapy, serious adenovirus illness can be managed only by treating symptoms and complications of the infection. Deaths are exceedingly rare but have been reported.
Treatments that may help with symptoms include simple pain medication and medications for fevers such as ibuprofen and acetaminophen (paracetamol). It, however, is not clear if acetaminophen helps with symptoms. It is not known if over the counter cough medications are effective for treating an acute cough. Cough medicines are not recommended for use in children due to a lack of evidence supporting effectiveness and the potential for harm. In 2009, Canada restricted the use of over-the-counter cough and cold medication in children six years and under due to concerns regarding risks and unproven benefits. The misuse of dextromethorphan (an over-the-counter cough medicine) has led to its ban in a number of countries. Intranasal corticosteroids have not been found to be useful.
In adults short term use of nasal decongestants may have a small benefit. Antihistamines may improve symptoms in the first day or two; however, there is no longer-term benefit and they have adverse effects such as drowsiness. Other decongestants such as pseudoephedrine appear effective in adults. Ipratropium nasal spray may reduce the symptoms of a runny nose but has little effect on stuffiness. The safety and effectiveness of nasal decongestant use in children is unclear.
Due to lack of studies, it is not known whether increased fluid intake improves symptoms or shortens respiratory illness, and there is a similar lack of data for the use of heated humidified air. One study has found chest vapor rub to provide some relief of nocturnal cough, congestion, and sleep difficulty.
When treating allergic laryngitis, topical nasal steroids and immunotherapy have been found to be effective for allergic rhinitis. Antihistamines may also be helpful, but can create a dryness in the larynx. Inhaled steroids that are used for a long period can lead to problems with the larynx and voice.
Mucous membrane pemphigoid may be managed with medication (cyclophosphamide and prednisolone).
No medications or herbal remedies have been conclusively demonstrated to shorten the duration of infection. Treatment thus comprises symptomatic relief. Getting plenty of rest, drinking fluids to maintain hydration, and gargling with warm salt water are reasonable conservative measures. Much of the benefit from treatment is, however, attributed to the placebo effect.