Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Abdominal pain is often the predominant symptom in patients with acute pancreatitis and should be treated with analgesics.
Opioids are safe and effective at providing pain control in patients with acute pancreatitis. Adequate pain control requires the use of intravenous opiates, usually in the form of a patient-controlled analgesia pump. Hydromorphone or fentanyl (intravenous) may be used for pain relief in acute pancreatitis. Fentanyl is being increasingly used due to its better safety profile, especially in renal impairment. As with other opiates, fentanyl can depress respiratory function. It can be given both as a bolus as well as constant infusion.
Meperidine has been historically favored over morphine because of the belief that morphine caused an increase in sphincter of Oddi pressure. However, no clinical studies suggest that morphine can aggravate or cause pancreatitis or cholecystitis. In addition, meperidine has a short half-life and repeated doses can lead to accumulation of the metabolite normeperidine, which causes neuromuscular side effects and, rarely, seizures.
In the management of acute pancreatitis, the treatment is to stop feeding the patient, giving them nothing by mouth, giving intravenous fluids to prevent dehydration, and sufficient pain control. As the pancreas is stimulated to secrete enzymes by the presence of food in the stomach, having no food pass through the system allows the pancreas to rest. Approximately 20% of patients have a relapse of pain during acute pancreatitis. Approximately 75% of relapses occur within 48 hours of oral refeeding.
The incidence of relapse after oral refeeding may be reduced by post-pyloric enteral rather than parenteral feeding prior to oral refeeding. IMRIE scoring is also useful.
The treatment of mild acute pancreatitis is successfully carried out by admission to a general hospital ward. Traditionally, people were not allowed to eat until the inflammation resolved but more recent evidence suggests early feeding is safe and improves outcomes. Because pancreatitis can cause lung damage and affect normal lung function, oxygen is occasionally delivered through breathing tubes that are connected via the nose. The tubes can then be removed after a few days once it is clear that the condition is improving. Dehydration may result during an episode of acute pancreatitis, so fluids will be provided intravenously. Opioids may be used for the pain. Early feeding does not appear to cause problems and may result in an ability to leave hospital sooner.
Severe pancreatitis can cause organ failure, necrosis, infected necrosis, pseudocyst, and abscess. If diagnosed with severe acute pancreatitis, people will need to be admitted to a high dependency unit or intensive care unit. It is likely that the levels of fluids inside the body will have dropped significantly as it diverts bodily fluids and nutrients in an attempt to repair the pancreas. The drop in fluid levels can lead to a reduction in the volume of blood within the body, which is known as hypovolemic shock. Hypovolemic shock can be life-threatening as it can very quickly starve the body of the oxygen-rich blood that it needs to survive. To avoid going into hypovolemic shock, fluids will be pumped intravenously. Oxygen will be supplied through tubes attached to the nose and ventilation equipment may be used to assist with breathing. Feeding tubes may be used to provide nutrients, combined with appropriate analgesia.
As with mild acute pancreatitis, it will be necessary to treat the underlying cause—gallstones, discontinuing medications, cessation of alcohol, etc. If the cause is gallstones, it is likely that an ERCP procedure or removal of the gallbladder will be recommended. The gallbladder should be removed during the same hospital admission or within two weeks of pancreatitis onset so as to limit the risk of recurrent pancreatitis. If the cause of pancreatitis is alcohol, cessation of alcohol consumption and treatment for alcohol dependency may improve pancreatitis. Even if the underlying cause is not related to alcohol consumption, doctors recommend avoiding it for at least six months as this can cause further damage to the pancreas during the recovery process. Oral intake, especially fats, is generally restricted initially but early enteral feeding within 48 hours has been shown to improve clinical outcomes. Fluids and electrolytes are replaced intravenously. Nutritional support is initiated via tube feeding to surpass the portion of the digestive tract most affected by secreted pancreatic enzymes if there is no improvement in the first 72–96 hours of treatment.
During an acute flare-up, therapy is targeted at reducing the inflammation present, and dilating the pupil. Mydriasis is important, as pupillary constriction is the primary reason for pain. Anti-inflammatory therapy is usually given both systemically, often in the form of flunixin meglumine, and topically, as prednisolone acetate. The mydriatic of choice is atropine. In the periods between acute attacks, no therapy has been shown to be beneficial.
Pancreatic enzyme replacement is often effective in treating the malabsorption and steatorrhea associated with chronic pancreatitis. Treatment of CP consists of administration of a solution of pancreatic enzymes with meals. Some patients do have pain reduction with enzyme replacement and since they are relatively safe, giving enzyme replacement to a chronic pancreatitis patient is an acceptable step in treatment for most patients. Treatment may be more likely to be successful in those without involvement of large ducts and those with idiopathic pancreatitis.
The different treatment options for management of chronic pancreatitis are medical measures, therapeutic endoscopy and surgery. Treatment is directed, when possible, to the underlying cause, and to relieve pain and malabsorption. Insulin dependent diabetes mellitus may occur and need long term insulin therapy. The abdominal pain can be very severe and require high doses of analgesics, sometimes including opiates. Alcohol cessation and dietary modifications (low-fat diet) are important to manage pain and slow the calcific process. Antioxidants may help but it is unclear if the benefits are meaningful.
Mucous membrane pemphigoid may be managed with medication (cyclophosphamide and prednisolone).
Horses that suffer from this disease can never be considered cured, although they can be managed by careful use of the therapy described above, and fast detection of new flare-ups. If the disease is not properly treated, it will eventually lead to blindness.
When treating allergic laryngitis, topical nasal steroids and immunotherapy have been found to be effective for allergic rhinitis. Antihistamines may also be helpful, but can create a dryness in the larynx. Inhaled steroids that are used for a long period can lead to problems with the larynx and voice.
In cases of viral adenoiditis, treatment with analgesics or antipyretics is often sufficient. Bacterial adenoiditis may be treated with antibiotics, such as amoxicillin - clavulanic acid or a cephalosporin. In case of adenoid hypertrophy, adenoidectomy may be performed to remove the adenoid.
Antibiotics are the first line of treatment in acute prostatitis. Antibiotics usually resolve acute prostatitis infections in a very short time, however a minimum of two to four weeks of therapy is recommended to eradicate the offending organism completely. Appropriate antibiotics should be used, based on the microbe causing the infection. Some antibiotics have very poor penetration of the prostatic capsule, others, such as ciprofloxacin, trimethoprim/sulfamethoxazole, and tetracyclines such as doxycycline penetrate prostatic tissue well. In acute prostatitis, penetration of the prostate is not as important as for category II because the intense inflammation disrupts the prostate-blood barrier. It is more important to choose a bactericidal antibiotic (kills bacteria, e.g., a fluoroquinolone antibiotic) rather than a bacteriostatic antibiotic (slows bacterial growth, e.g. tetracycline) for acute potentially life-threatening infections.
Severely ill patients may need hospitalization, while nontoxic patients can be treated at home with bed rest, analgesics, stool softeners, and hydration. Men with acute prostatitis complicated by urinary retention are best managed with a suprapubic catheter or intermittent catheterization. Lack of clinical response to antibiotics should raise the suspicion of an abscess and prompt an imaging study such as a transrectal ultrasound (TRUS).
Uveitis is typically treated with glucocorticoid steroids, either as topical eye drops (prednisolone acetate) or as oral therapy. Prior to the administration of corticosteroids, corneal ulcers must be ruled out. This is typically done using a fluoresence dye test. In addition to corticosteroids, topical cycloplegics, such as atropine or homatropine, may be used. Successful treatment of active uveitis increases T-regulatory cells in the eye, which likely contributes to disease regression.
In some cases an injection of posterior subtenon triamcinolone acetate may also be given to reduce the swelling of the eye.
Antimetabolite medications, such as methotrexate are often used for recalcitrant or more aggressive cases of uveitis. Experimental treatments with Infliximab or other anti-TNF infusions may prove helpful.
The anti-diabetic drug metformin is reported to inhibit the process that causes the inflammation in uveitis.
In the case of herpetic uveitis, anti-viral medications, such as valaciclovir or aciclovir, may be administered to treat the causative viral infection.
It is unclear whether or not acute proliferative glomerulonephritis (i.e., poststreptococcal glomerulonephritis) can be prevented with early prophylactic antibiotic therapy, with some authorities arguing that antibiotics can prevent development of acute proliferative glomerulonephritis, while others reject that antibiotics can prevent acute proliferative glomerulonephritis.
Treatment of acute proliferative glomerulonephritis consists of blood pressure (BP) control:also a renal biopsy may be needed to be performed at some point. A low-sodium diet may be needed when hypertension is present. In individuals with oliguric acute kidney injury, the amount of potassium should be controlled.
Patients with uncomplicated acute pericarditis can generally be treated and followed up in an outpatient clinic. However, those with high risk factors for developing complications (see above) will need to be admitted to an inpatient service, most likely an ICU setting. High risk patients include the following:
- subacute onset
- high fever (> 100.4 F/38 C) and leukocytosis
- development of cardiac tamponade
- large pericardial effusion (echo-free space > 20 mm) resistant to NSAID treatment
- immunocompromised
- history of oral anticoagulation therapy
- acute trauma
- failure to respond to seven days of NSAID treatment
Pericardiocentesis is a procedure whereby the fluid in a pericardial effusion is removed through a needle. It is performed under the following conditions:
- presence of moderate or severe cardiac tamponade
- diagnostic purpose for suspected purulent, tuberculosis, or neoplastic pericarditis
- persistent symptomatic pericardial effusion
NSAIDs in "viral" or "idiopathic" pericarditis. In patients with underlying causes other than viral, the specific etiology should be treated. With idiopathic or viral pericarditis, NSAID is the mainstay treatment. Goal of therapy is to reduce pain and inflammation. The course of the disease may not be affected. The preferred NSAID is ibuprofen because of rare side effects, better effect on coronary flow, and larger dose range. Depending on severity, dosing is between 300–800 mg every 6–8 hours for days or weeks as needed. An alternative protocol is aspirin 800 mg every 6–8 hours. Dose tapering of NSAIDs may be needed. In pericarditis following acute myocardial infarction, NSAIDs other than aspirin should be avoided since they can impair scar formation. As with all NSAID use, GI protection should be engaged. Failure to respond to NSAIDs within one week (indicated by persistence of fever, worsening of condition, new pericardial effusion, or continuing chest pain) likely indicates that a cause other than viral or idiopathic is in process.
Colchicine, which has been essential to treat recurrent pericarditis, has been supported for routine use in acute pericarditis by recent prospective studies. Colchicine can be given 0.6 mg twice a day (0.6 mg daily for patients <70 kg) for 3 months following an acute attack. It should be considered in all patients with acute pericarditis, preferably in combination with a short-course of NSAIDs. For patients with a first episode of acute idiopathic or viral pericarditis, they should be treated with an NSAID plus colchicine 1–2 mg on first day followed by 0.5 daily or twice daily for three months. It should be avoided or used with caution in patients with severe renal insufficiency, hepatobiliary dysfunction, blood dyscrasias, and gastrointestinal motility disorders.
Corticosteroids are usually used in those cases that are clearly refractory to NSAIDs and colchicine and a specific cause has not been found. Systemic corticosteroids are usually reserved for those with autoimmune disease.
Supportive measures may be instituted prior to surgery. These measures include fluid resuscitation. Intravenous opioids can be used for pain control.
Antibiotics are often not needed. If used they should target enteric organisms (e.g. Enterobacteriaceae), such as "E. coli" and "Bacteroides". This may consist of a broad spectrum antibiotic; such as piperacillin-tazobactam, ampicillin-sulbactam, ticarcillin-clavulanate (Timentin), a third generation cephalosporin (e.g.ceftriaxone) or a quinolone antibiotic (such as ciprofloxacin) and anaerobic bacteria coverage, such as metronidazole. For penicillin allergic people, aztreonam or a quinolone with metronidazole may be used.
In cases of severe inflammation, shock, or if the person has higher risk for general anesthesia (required for cholecystectomy), an interventional radiologist may insert a percutaneous drainage catheter into the gallbladder ('percutaneous cholecystostomy tube') and treat the person with antibiotics until the acute inflammation resolves. A cholecystectomy may then be warranted if the person's condition improves.
Homeopathic approaches to treating cholecystitis have not been validated by evidence and should not be used in place of surgery.
Intensive cardiac care and immunosuppressives including corticosteroids are helpful in the acute stage of the disease. Chronic phase has, mainly debility control and supportive care options.
In more severe cases, it is treated by administering intravenous antibiotics and may require admission to an intensive care unit (ICU) for intubation and supportive ventilation if the airway swelling is severe. During an intensive care admission, various methods of invasive and non-invasive monitoring may be required, which may include ECG monitoring, oxygen saturation, capnography and arterial blood pressure monitoring.
Treatment for fungal sinusitis can include surgical debridement; helps by slowing progression of disease thus allowing time for recovery additionally we see the options below:
- In the case of invasive fungal sinusitis, echinocandins, voriconazole, and amphoterecin (via IV) may be used
- For allergic fungal sinusitis, systemic corticosteroids like prednisolone, methylprednisolone are added for their anti-inflammatory effect, bronchodilators and expectorants help to clear secretions in the sinuses.
A low fat diet is indicated. The use of drugs which are known to have an association with pancreatitis should be avoided. Some patients benefit from the use of pancreatic enzymes on a supplemental basis. One study indicated that 57 percent of dogs, who were followed for six months after an acute pancreatitis attack, either continued to exhibit inflammation of the organ or had decreased acinar cell function, even though they had no pancreatitis symptoms.
Anticipating later botox therapy for migraine, early work by Jancsó "et al." found some success in treatment using denervation or pretreatment with capsaicin to prevent uncomfortable symptoms of neurogenic inflammation.
A recent (2010) study of the treatment of migraine with CGRP blockers shows promise. In early trials, the first oral nonpeptide CGRP antagonist, MK-0974 (Telcagepant), was shown effective in the treatment of migraine attacks, but elevated liver enzymes in two participants were found. Other therapies and other links in the neurogenic inflammatory pathway for interruption of disease are under study, including migraine therapies.
Noting that botulinum toxin has been shown to have an effect on inhibiting neurogenic inflammation, and evidence suggesting the role of neurogenic inflammation in the pathogenesis of psoriasis, the University of Minnesota has a pilot clinical trial underway to follow up on the observation that patients treated with botulinum toxin for dystonia had dramatic improvement in psoriasis.
Astelin (Azelastine) "is indicated for symptomatic treatment of vasomotor rhinitis including rhinorrhea, nasal congestion, and post nasal drip in adults and children 12 years of age and older."
Statins appear to "decrease expression of the proinflammatory neuropeptides calcitonin gene-related peptide and substance P in sensory neurons," and so might be of use in treating diseases presenting with predominant neurogenic inflammation.
Interventions include intravenous (IV) medications (e.g. magnesium sulfate), aerosolized medications to dilate the airways (bronchodilation) (e.g., albuterol or ipratropium bromide/salbutamol), and positive-pressure therapy, including mechanical ventilation. Multiple therapies may be used simultaneously to rapidly reverse the effects of status asthmaticus and reduce permanent damage of the airways. Intravenous corticosteroids and methylxanthines are often given. If the person with a severe asthma exacerbation is on a mechanical ventilator, certain sedating medications such as ketamine or propofol, have bronchodilating properties. According to a new randomized control trial ketamine and aminophylline are also effective in children with acute asthma who responds poorly to standard therapy.
The majority of time treatment is symptomatic. Specific treatments are effective for bacterial, fungal, and herpes simplex infections.
Currently treatment of ARN consists of antiviral therapy administered orally. Typical antiviral agents used include famciclovir, valganciclovir, and valacyclovir. While on these medications, a patient's kidney function should be watched. Some physician's also may administer the antiviral agents via intravitreal delivery. Though controversial, some physicians administer steroids (prednisone) and antithrombotic therapy (aspirin).
Some commonly admistered antiviral agents are as follows:
- Acyclovir
- Famciclovir
- Valacyclovir
- Gancicilovir
- Valganciclovir