Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antibiotics are the first line of treatment in acute prostatitis. Antibiotics usually resolve acute prostatitis infections in a very short time, however a minimum of two to four weeks of therapy is recommended to eradicate the offending organism completely. Appropriate antibiotics should be used, based on the microbe causing the infection. Some antibiotics have very poor penetration of the prostatic capsule, others, such as ciprofloxacin, trimethoprim/sulfamethoxazole, and tetracyclines such as doxycycline penetrate prostatic tissue well. In acute prostatitis, penetration of the prostate is not as important as for category II because the intense inflammation disrupts the prostate-blood barrier. It is more important to choose a bactericidal antibiotic (kills bacteria, e.g., a fluoroquinolone antibiotic) rather than a bacteriostatic antibiotic (slows bacterial growth, e.g. tetracycline) for acute potentially life-threatening infections.
Severely ill patients may need hospitalization, while nontoxic patients can be treated at home with bed rest, analgesics, stool softeners, and hydration. Men with acute prostatitis complicated by urinary retention are best managed with a suprapubic catheter or intermittent catheterization. Lack of clinical response to antibiotics should raise the suspicion of an abscess and prompt an imaging study such as a transrectal ultrasound (TRUS).
Treatment is based on the prescription and use of the proper antibiotics depending on the strain of the ureaplasma.
Because of its multi-causative nature, initial treatment strategies involve using a broad range antibiotic that is effective against chlamydia (such as doxycycline). It is imperative that both the patient and any sexual contacts be treated. Women infected with the organisms that cause NGU may develop pelvic inflammatory disease. If symptoms persist, follow-up with a urologist may be necessary to identify the cause.
According to a study, tinidazole used with doxycycline or azithromycin may cure NGU better than when doxycycline or azithromycin is used alone.
If left untreated, complications include epididymitis and infertility. Consistent and correct use of latex condoms during sexual activity greatly reduces the likelihood of infection.
A variety of drugs may be prescribed based on the cause of the patient's urethritis. Some examples of medications based on causes include: azithromycin, doxycycline, erythromycin, levofloxacin, metronidazole, ofloxacin, or tinidazole.
Proper perineal hygiene should be stressed. This includes avoiding use of vaginal deodorant sprays and proper wiping after urination and bowel movements. Intercourse should be avoided until symptoms subside.
Treatment is often started without confirmation of infection because of the serious complications that may result from delayed treatment. Treatment depends on the infectious agent and generally involves the use of antibiotic therapy. If there is no improvement within two to three days, the patient is typically advised to seek further medical attention. Hospitalization sometimes becomes necessary if there are other complications. Treating sexual partners for possible STIs can help in treatment and prevention.
For women with PID of mild to moderate severity, parenteral and oral therapies appear to be effective. It does not matter to their short- or long-term outcome whether antibiotics are administered to them as inpatients or outpatients. Typical regimens include cefoxitin or cefotetan plus doxycycline, and clindamycin plus gentamicin. An alternative parenteral regimen is ampicillin/sulbactam plus doxycycline. Erythromycin-based medications can also be used. Another alternative is to use a parenteral regimen with ceftriaxone or cefoxitin plus doxycycline. Clinical experience guides decisions regarding transition from parenteral to oral therapy, which usually can be initiated within 24–48 hours of clinical improvement.
If symptomatic, testing is recommended. The risk of contracting Micoplasma infection can be reduced by the following:
- Using barrier methods such as condoms
- Seeking medical attention if you are experiencing symptoms suggesting a sexually transmitted infection.
- Seeking medical attention after learning that a current or former sex partner has, or might have had a sexually transmitted infection.
- Getting a STI history from your current partner and insisting they be tested and treated before intercourse.
- Avoiding vaginal activity, particularly intercourse, after the end of a pregnancy (delivery, miscarriage, or abortion) or certain gynecological procedures, to ensure that the cervix closes.
- Abstinence
Mycoplasmas have a triple-layered membrane and lack a cell wall. Commonly used antibiotics are generally ineffective because their efficacy is due to their ability to inhibit cell wall synthesis. Micoplasmas are not affected by penicillins and other antibiotics that act on the cell wall. The growth of micoplasmas in their host is inhibited by other broad-spectrum antibiotics. These broad-spectrum antibiotics inhibit the multiplication of the mycoplasma but does not kill them. Tetracyclines, macrolides, erythromycin, macrolides, ketolides, quinolones are used to treat mycoplasma infections. In addition to the penicillins, mycoplasmas are resistant to rifampicin. Mycoplasmas may be difficult to eradicate from human or animal hosts or from cell cultures by antibiotic treatment because of resistance to the antibiotic, or because it does not kill the mycoplasma cell. Mycoplasma cells are able to invade the cells of their hosts.
Treatment involves antibiotics and may involve drainage of the buboes or abscesses by needle aspiration or incision. Further supportive measure may need to be taken: dilatation of the rectal stricture, repair of rectovaginal fistulae, or colostomy for rectal obstruction.
Common antibiotic treatments include: tetracycline (doxycycline) (all tetracyclines, including doxycycline, are contraindicated during pregnancy and in children due to effects on bone development and tooth discoloration), and erythromycin. Azithromycin is also a drug of choice in LGV.
Risk of some causes of urethritis can be lessened by avoiding unprotected sexual activity, chemicals that could irritate the urethra; this could include detergents or lotions as well as spermicides or contraceptives, and irritation caused by manual manipulation of the urethra.
As with all STIs, sex partners of patients who have LGV should be examined and tested for urethral or cervical chlamydial infection. After a positive culture for chlamydia, clinical suspicion should be confirmed with testing to distinguish serotype. Antibiotic treatment should be started if they had sexual contact with the patient during the 30 days preceding onset of symptoms in the patient. Patients with a sexually transmitted disease should be tested for other STDs due to high rates of comorbid infections. Antibiotics are not without risks and prophylaxtic broad antibiotic coverage is not recommended.
If tubal factor infertility is suspected to be the cause of the infertility treatment begins with or without confirmation of infection because of complications that may result from delayed treatment. Appropriate treatment depends on the infectious agent and utilizes antibiotic therapy. Treating the sexual partner for possible STIs helps in treatment and prevents reinfection.
Antibiotic administration affects the short or long-term major outcome of women with mild or moderate disease.
For women with infections of mild to moderate severity, parenteral and oral therapies are prescribed . Typical antibiotics used are cefoxitin or cefotetan plus doxycycline, and clindamycin plus gentamicin. An alternative parenteral regimen is ampicillin/sulbactam plus doxycycline. Once infection has been eliminated, surgery may be successful in opening the lumen of the fallopian tubes to allow a successful pregnancy and birth.
Even when the PID infection is cured, effects of the infection may be permanent. This makes early identification essential. Treatment resulting in cure is very important in the prevention of damage to the reproductive system. Formation of scar tissue due to one or episodes of PID can lead to tubal blockage, increasing the risk of the inability to get pregnant and long-term pelvic/abdominal pain. Certain occurrences such as a post pelvic operation, the period of time immediately after childbirth (postpartum), miscarriage or abortion increase the risk of acquiring another infection leading to PID.
Prophylaxis needs antenatal, natal, and post-natal care.
- Antenatal measures include thorough care of mother and treatment of genital infections when suspected.
- Natal measures are of utmost importance as mostly infection occurs during childbirth. Deliveries should be conducted under hygienic conditions taking all aseptic measures. The newborn baby's closed lids should be thoroughly cleansed and dried.
- If it is determined that the cause is due to a blocked tear duct, a gentle palpation between the eye and the nasal cavity may be used to clear the tear duct. If the tear duct is not cleared by the time the newborn is one year old, surgery may be required.
- Postnatal measures include:
- Chemical ophthalmia neonatorum is a self-limiting condition and does not require any treatment.
- Gonococcal ophthalmia neonatorum needs prompt treatment to prevent complications. Topical therapy should include
Systemic therapy: Newborns with gonococcal ophthalmia neonatorum should be treated for seven days with one of the following regimens ceftriaxone, cefotaxime, ciprofloxacin, crystalline benzyl penicillin
- Other bacterial ophthalmia neonatorum should be treated by broad spectrum antibiotics drops and ointment for two weeks.
- Neonatal inclusion conjunctivitis caused by Chlamydia trachomatis responds well to topical tetracycline 1% or erythromycin 0.5% eye ointment QID for three weeks. However systemic erythromycin should also be given since the presence of chlamydia agents in conjunctiva implies colonization of upper respiratory tract as well. Both parents should also be treated with systemic erythromycin.
- Herpes simplex conjunctivitis should be treated with intravenous acyclovir for a minimum of 14 days to prevent systemic infection.
Antibiotic ointment is typically applied to the newborn's eyes within 1 hour of birth as prevention against gonococcal ophthalmia. This maybe erythromycin, tetracycline, or silver nitrate.
Treatment is usually with intravenous antibiotics, analgesia and washout and/or aspiration of the joint. Draining the pus from the joint is important and can be done either by needle (arthrocentesis) or opening the joint surgically (arthrotomy).
Empiric antibiotics for suspected bacteria should be started. This should be based on gram stain of the synovial fluid as well as other clinical findings. General guidelines are as follows:
- Gram positive cocci - vancomycin
- Gram negative cocci - Ceftriaxone
- Gram negative bacilli - Ceftrioxone, cefotaxime, or ceftazidime
- Gram stain negative and immunocompetent - vancomycin
- Gram stain negative and immunocompromised - vancomycin + third generation cephalosphorin
- IV drug use (possible pseudomonas aeruginosa) - ceftazidime +/- an aminoglycoside
Once cultures are available, antibiotics can be changed to target the specific organism.
After a good response to intravenous antibiotics, patients can be switched to oral antibiotics. The duration of oral antibiotics varies, but is generally for 1-4 weeks depending on the offending organism.
In infection of a prosthetic joint, a biofilm is often created on the surface of the prosthesis which is resistant to antibiotics. Surgical debridement is usually indicated in these cases. A replacement prosthesis is usually not inserted at the time of removal to allow antibiotics to clear infection of the region. Patients that cannot have surgery may try long-term antibiotic therapy in order to suppress the infection.
Close follow up with physical exam & labs must be done to make sure patient is no longer feverish, pain has resolved, has improved range of motion, and lab values are normalized.
The bacteria most associated with salpingitis are:
- N. gonorrhoeae
- Chlamydia trachomatis
- Mycoplasma
- Staphylococcus
- Streptococcus
However, salpingitis is usually polymicrobial, involving many kinds of organisms. Other examples of organisms involved are:
- Ureaplasma urealyticum
- Anaerobic and aerobic bacteria
It's been theorized that retrograde menstrual flow and the cervix opening during menstruation allows the infection to reach the Fallopian tubes.
Other risk factors include surgical procedures that break the cervical barrier, such as:
- endometrial biopsy
- curettage
- hysteroscopy
Another risk is factors that alter the microenvironment in the vagina and cervix, allowing infecting organisms to proliferate and eventually ascend to the Fallopian tube:
- antibiotic treatment
- ovulation
- menstruation
- sexually transmitted disease (STD)
Finally, sexual intercourse may facilitate the spread of disease from the vagina to the Fallopian tube. Coital risk factors are:
- Uterine contractions
- Sperm, carrying organisms upward
When treating allergic laryngitis, topical nasal steroids and immunotherapy have been found to be effective for allergic rhinitis. Antihistamines may also be helpful, but can create a dryness in the larynx. Inhaled steroids that are used for a long period can lead to problems with the larynx and voice.
Mucous membrane pemphigoid may be managed with medication (cyclophosphamide and prednisolone).
Acute prostatitis is a serious bacterial infection of the prostate gland. This infection is a medical emergency. It should be distinguished from other forms of prostatitis such as chronic bacterial prostatitis and chronic pelvic pain syndrome (CPPS).
The most common bacterial cause of NGU is "Chlamydia trachomatis", but it can also be caused by "Ureaplasma urealyticum", "Haemophilus vaginalis", "Mycoplasma genitalium", Mycoplasma hominis, Gardnerella vaginalis, Acinetobacter lwoffi, Ac.calcoclaceticus and "E.coli".
The organism should be cultured and antibiotic sensitivity should be determined before treatment is started. Amoxycillin is usually effective in treating streptococcal infections.
Biosecurity protocols and good hygiene are important in preventing the disease.
Vaccination is available against "S. gallolyticus" and can also protect pigeons.
During an acute flare-up, therapy is targeted at reducing the inflammation present, and dilating the pupil. Mydriasis is important, as pupillary constriction is the primary reason for pain. Anti-inflammatory therapy is usually given both systemically, often in the form of flunixin meglumine, and topically, as prednisolone acetate. The mydriatic of choice is atropine. In the periods between acute attacks, no therapy has been shown to be beneficial.
Oophoritis is an inflammation of the ovaries.
It is often seen in combination with salpingitis (inflammation of the fallopian tubes). It may develop in response to infection.
Horses that suffer from this disease can never be considered cured, although they can be managed by careful use of the therapy described above, and fast detection of new flare-ups. If the disease is not properly treated, it will eventually lead to blindness.
Early treatment of an ectopic pregnancy with methotrexate is a viable alternative to surgical treatment which was developed in the 1980s. If administered early in the pregnancy, methotrexate terminates the growth of the developing embryo; this may cause an abortion, or the developing embryo may then be either resorbed by the woman's body or pass with a menstrual period. Contraindications include liver, kidney, or blood disease, as well as an ectopic embryonic mass > 3.5 cm.
Also, it may lead to the inadvertent termination of an undetected intrauterine pregnancy, or severe abnormality in any surviving pregnancy. Therefore, it is recommended that methotrexate should only be administered when hCG has been serially monitored with a rise less than 35% over 48 hours, which practically excludes a viable intrauterine pregnancy.