Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment varies according to the type and severity of the encephalopathy. Anticonvulsants may be prescribed to reduce or halt any seizures. Changes to diet and nutritional supplements may help some patients. In severe cases, dialysis or organ replacement surgery may be needed.
Sympathomimetic drugs can increase motivation, cognition, motor performance and alertness in patients with encephalopathy caused by brain injury, chronic infections, strokes, brain tumors.
To minimise the risk of this condition developing from its most common cause, overly rapid reversal of hyponatremia, the hyponatremia should be corrected at a rate not exceeding 10 mmol/L/24 h or 0.5 mEq/L/h; or 18 m/Eq/L/48hrs; thus avoiding demyelination. No large clinical trials have been performed to examine the efficacy of therapeutic re-lowering of serum sodium, or other interventions sometimes advocated such as steroids or plasma exchange.
Alcoholic patients should receive vitamin supplementation and a formal evaluation of their nutritional status.
Once osmotic demyelination has begun, there is no cure or specific treatment. Care is mainly supportive. Alcoholics are usually given vitamins to correct for other deficiencies. The favourable factors contributing to the good outcome in CPM without hyponatremia were: concurrent treatment of all electrolyte disturbances, early Intensive Care Unit involvement at the advent of respiratory complications, early introduction of feeding including thiamine supplements with close monitoring of the electrolyte changes and input.
Research has led to improved outcomes. Animal studies suggest that inositol reduces the severity of osmotic demyelination syndrome if given before attempting to correct chronic hyponatraemia. Further study is required before using inositol in humans for this purpose.
No high quality evidence has shown any drug very useful as of 2013. Rufinamide, lamotrigine, topiramate and felbamate may be useful.
The treatment of PRES dependent on its cause. Anti-epileptic medication may also be appropriate.
LGS seizures are often treatment resistant, but this does not mean that treatment is futile. Options include anticonvulsants, anesthetics, steroids such as prednisone, immunoglobulins, and various other pharmacological agents that have been reported to work in individual patients.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
In the past, treatment options were limited to supportive medical therapy. Nowadays neonatal encephalopathy is treated using hypothermia therapy.
Many antiepileptic drugs are used for the management of canine epilepsy. Oral phenobarbital, in particular, and imepitoin are considered to be the most effective antiepileptic drugs and usually used as ‘first line’ treatment. Other anti-epileptics such as zonisamide, primidone, gabapentin, pregabalin, sodium valproate, felbamate and topiramate may also be effective and used in various combinations. A crucial part of the treatment of pets with epilepsy is owner education to ensure compliance and successful management.
Treatment is mainly for the symptoms that toxic encephalopathy brings upon victims, varying depending on how severe the case is. Diet changes and nutritional supplements may help some patients. To reduce or halt seizures, anticonvulsants may be prescribed. Dialysis or organ replacement surgery may be needed in some severe cases.
Management of affected individuals consists of immediate removal from exposure to the toxic substance(s), treatment of the common clinical manifestation of depression if present, and counselling for the provision of life strategies to help cope with the potentially debilitating condition.
Early and aggressive treatment is important to prevent irreversible neurological damage, hearing loss, or vision loss. Medications used include immunosuppressive agents and corticosteroids such a prednisone, or intravenous immunoglobulins (IVIG). Other drugs that have been used are mycophenolate mofetil (Cellcept), azathioprine (Imuran), cyclophosphamide, rituximab, and anti-TNF therapies.
Hearing aids or cochlear implants may be necessary in the event of hearing loss.
Most symptoms will improve quickly if deficiencies are treated early. Memory disorder may be permanent.
In patients suspected of WE, thiamine treatment should be started immediately. Blood should be immediately taken to test for thiamine, other vitamins and minerals levels. Following this an immediate intravenous or intramuscular dose of thiamine should be administered two or three times daily. Thiamine administration is usually continued until clinical improvement ceases.
Considering the diversity of possible causes and several surprising symptomatologic presentations, and because there is low assumed risk of toxicity of thiamine, because the therapeutic response is often dramatic from the first day, some qualified authors indicate parenteral thiamine if WE is suspected, both as a resource for diagnosis and treatment. The diagnosis is highly supported by the response to parenteral thiamine, but is not sufficient to be excluded by the lack of it. Parenteral thiamine administration is associated with a very small risk of anaphylaxis.
Alcohol abusers may have poor dietary intakes of several vitamins, and impaired thiamine absorption, metabolism, and storage; they may thus require higher doses.
If glucose is given, such as in hypoglycaemic alcoholics, thiamine must be given concurrently. If this is not done, the glucose will rapidly consume the remaining thiamine reserves, exacerbating this condition.
The observation of edema in MR, and also the finding of inflation and macrophages in necropsied tissues, has led to successful administration of antiinflammatories.
Other nutritional abnormalities should also be looked for, as they may be exacerbating the disease. In particular, magnesium, a cofactor of transketolase which may induce or aggravate the disease.
Other supplements may also be needed, including: cobalamin, ascorbic acid, folic acid, nicotinamide, zinc, phosphorus (dicalcium phosphate) and in some cases taurine, especially suitable when there cardiocirculatory impairment.
Patient-guided nutrition is suggested. In patients with Wernicke-Korsakoff syndrome, even higher doses of parenteral thiamine are recommended. Concurrent toxic effects of alcohol should also be considered.
Treating the underlying cause of the disorder may improve or reverse symptoms. However, in some cases, the encephalopathy may cause permanent structural changes and irreversible damage to the brain. These permanent deficits can be considered a form of stable dementia. Some encephalopathies can be fatal.
The antibiotic rifaximin may be recommended in addition to lactulose for those with recurrent disease. It is a nonabsorbable antibiotic from the rifamycin class. This is thought to work in a similar way to other antibiotics, but without the complications attached to neomycin or metronidazole. Due to the long history and lower cost of lactulose use, rifaximin is generally only used as a second-line treatment if lactulose is poorly tolerated or not effective. When rifaximin is added to lactulose, the combination of the two may be more effective than each component separately. Rifaximin is more expensive than lactulose, but the cost may be offset by reduced hospital admissions for encephalopathy.
The antibiotics neomycin and metronidazole are other antibiotics used to treat hepatic encephalopathy. The rationale of their use was the fact that ammonia and other waste products are generated and converted by intestinal bacteria, and killing these bacteria would reduce the generation of these waste products. Neomycin was chosen because of its low intestinal absorption, as neomycin and similar aminoglycoside antibiotics may cause hearing loss and kidney failure if used by injection. Later studies showed that neomycin was indeed absorbed when taken by mouth, with resultant complications. Metronidazole, similarly, is less commonly used because prolonged use can cause nerve damage, in addition to gastrointestinal side effects.
Lactulose and lactitol are disaccharides that are not absorbed from the digestive tract. They are thought to decrease the generation of ammonia by bacteria, render the ammonia inabsorbable by converting it to ammonium (NH) ions, and increase transit of bowel content through the gut. Doses of 15-30 ml are administered three times a day; the result is aimed to be 3–5 soft stools a day, or (in some settings) a stool pH of <6.0. Lactulose may also be given by enema, especially if encephalopathy is severe. More commonly, phosphate enemas are used. This may relieve constipation, one of the causes of encephalopathy, and increase bowel transit.
Lactulose and lactitol are beneficial for treating hepatic encephalopathy, and are the recommended first-line treatment. Lactulose does not appear to be more effective than lactitol for treating people with hepatic encephalopathy. Side effects of lactulose and lactitol include the possibility of diarrhea, bloating, flatulence, and nausea. In acute liver failure, it is unclear whether lactulose is beneficial. The possible side effect of bloating may interfere with a liver transplant procedure if required.
As of 2014, no treatment strategy has yet been investigated in a randomized clinical trial. Verapamil, nimodipine, and other calcium channel blockers may help reduce the intensity and frequency of the headaches. A clinician may recommend rest and the avoidance of activities or vasoactive drugs which trigger symptoms (see § Causes). Analgesics and anticonvulsants can help manage pain and seizures, respectively.
Because most patients respond to steroids or immunosuppressant treatment, this condition is now also referred to as steroid-responsive encephalopathy.
Initial treatment is usually with oral prednisone (50–150 mg/day) or high-dose IV methylprednisolone (1 g/day) for 3–7 days. Thyroid hormone treatment is also included if required.
Failure of some patients to respond to this first line treatment has produced a variety of alternative treatments including azathioprine, cyclophosphamide, chloroquine, methotrexate, periodic intravenous immunoglobulin and plasma exchange. There have been no controlled trials so the optimal treatment is not known.
Seizures, if present, are controlled with typical antiepileptic agents.
The first line treatment of choice for someone who is actively seizing is a benzodiazepine, most guidelines recommend lorazepam. This may be repeated if there is no effect after 10 minutes. If there is no effect after two doses, barbiturates or propofol may be used. Benzodiazepines given by a non-intravenous route appear to be better than those given by intravenous as the intravenous takes time to start.
Ongoing anti-epileptic medications are not typically recommended after a first seizure except in those with structural lesions in the brain. They are generally recommended after a second one has occurred. Approximately 70% of people can obtain full control with continuous use of medication. Typically one type of anticonvulsant is preferred. Following a first seizure, while immediate treatment with an anti-seizure drug lowers the probability of seizure recurrence up to five years it does not change the risk of death and there are potential side effects.
In seizures related to toxins, up to two doses of benzodiazepines should be used. If this is not effective pyridoxine is recommended. Phenytoin should generally not be used.
There is a lack of evidence for preventative anti-epileptic medications in the management of seizures related to intracranial venous thrombosis.
In most of the reported cases, the treatment options were very similar. Plasmapheresis alone or in combination with steroids, sometimes also with thymectomy and azathioprine, have been the most frequently used therapeutic approach in treating Morvan’s Syndrome. However, this does not always work, as failed response to steroids and to subsequently added plasmapheresis have been reported. Intravenous immunoglobulin was effective in one case.
In one case, the dramatic response to high-dose oral prednisolone together with pulse methylprednisolone with almost complete disappearance of the symptoms within a short period should induce consideration of corticosteroids.
In another case, the subject was treated with haloperidol (6 mg/day) with some improvement in the psychomotor agitation and hallucinations, but even high doses of carbamazepine given to the subject failed to improve the spontaneous muscle activity. Plasma Exchange (PE) was initiated, and after the third such session, the itching, sweating, mental disturbances, and complex nocturnal behavior improved and these symptoms completely disappeared after the sixth session, with improvement in insomnia and reduced muscle twitching. However, one month after the sixth PE session, there was a progressive worsening of insomnia and diurnal drowsiness, which promptly disappeared after another two PE sessions.
In one case there high dose steroid treatment resulted in a transient improvement, but aggressive immuno-suppressive therapy with cyclophosphamide was necessary to control the disease and result in a dramatic clinical improvement.
In another case, the subject was treated with prednisolone (1 mg/kg body weight) with carbamazepine, propanolol, and amitriptyline. After two weeks, improvement with decreased stiffness and spontaneous muscle activity and improved sleep was observed. After another 7–10 days, the abnormal sleep behavior disappeared completely.
In another case, symptomatic improvement with plasmapheresis, thymectomy, and chronic immunosuppression provide further support for an autoimmune or paraneoplastic basis.
Although thymectomy is believed to be a key element in the proposed treatment, there is a reported case of Morvan’s Syndrome presenting itself post-thymectomy.
There is no cure for Gerstmann syndrome. Treatment is symptomatic and supportive. Occupational and speech therapies may help diminish the dysgraphia and apraxia. In addition, calculators and word processors may help school children cope with the symptoms of the disorder.
Although no specific treatment exists, the disease can be managed with anticonvulsants, physiotherapy, etc.
Currently treatment is only symptomatic and palliative. Treatment for manifestations, such as seizures, dystonia, sleep disorders, depression and anxiety, can be effectively managed. Physical and occupational therapy is recommended to help patients retain fine motor function for as long as possible Recent progress has been made in the application of enzyme-replacement, gene, and stem cell therapies for patients.
The onset of Wernicke's encephalopathy is considered a medical emergency, and thus thiamine administration should be initiated immediately when the disease is suspected. Prompt administration of thiamine to patients with Wernicke's encephalopathy can prevent the disorder from developing into Wernicke–Korsakoff syndrome, or reduce its severity. Treatment can also reduce the progression of the deficits caused by WKS, but will not completely reverse existing deficits. WKS will continue to be present, at least partially, in 80% of patients. Patients suffering from WE should be given a minimum dose of 500 mg of thiamine hydrochloride, delivered by infusion over a 30-minute period for two to three days. If no response is seen then treatment should be discontinued but for those patients that do respond, treatment should be continued with a 250 mg dose delivered intravenously or intramuscularly for three to five days unless the patient stops improving. Such prompt administration of thiamine may be a life-saving measure. Banana bags, a bag of intravenous fluids containing vitamins and minerals, is one means of treatment.
As described, Korsakoff 's syndrome usually follows or accompanies Wernicke's encephalopathy. If treated quickly, it may be possible to prevent the development of Korsakoff's syndrome with thiamine treatments. This treatment is not guaranteed to be effective and the thiamine needs to be administered adequately in both dose and duration. A study on Wernicke-Korsakoff's syndrome showed that with consistent thiamine treatment there were noticeable improvements in mental status after only 2–3 weeks of therapy. Thus, there is hope that with treatment Wernicke's encephalopathy will not necessarily progress to WKS.
In order to reduce the risk of developing WKS it is important to limit the intake of alcohol or drink in order to ensure that proper nutrition needs are met. A healthy diet is imperative for proper nutrition which, in combination with thiamine supplements, may reduce the chance of developing WKS. This prevention method may specifically help heavy drinkers who refuse to or are unable to quit.
The initial aim of treatment in hypertensive crises is to rapidly lower the diastolic pressure to about 100 to 105 mmHg; this goal should be achieved within two to six hours, with the maximum initial fall in BP not exceeding 25 percent of the presenting value. This level of BP control will allow gradual healing of the necrotizing vascular lesions. More aggressive hypotensive therapy is both unnecessary and may reduce the blood pressure below the autoregulatory range, possibly leading to ischemic events (such as stroke or coronary disease).
Once the BP is controlled, the person should be switched to medication by mouth, with the diastolic pressure being gradually reduced to 85 to 90 mmHg over two to three months. The initial reduction to a diastolic pressure of approximately 100 mmHg is often associated with a modest worsening of renal function; this change, however, is typically transient as the vascular disease tends to resolve and renal perfusion improves over one to three months. Antihypertensive therapy should not be withheld in this setting unless there has been an excessive reduction in BP. A change in medication, however, is indicated if the decline in renal function is temporally related to therapy with an angiotensin (ACE) converting enzyme inhibitor or angiotensin II receptor blocker, which can interfere with renal autoregulation and produce acute renal failure in patients with bilateral renal artery stenosis. (See "Renal effects of ACE inhibitors in hypertension".)
Several parenteral antihypertensive agents are most often used in the initial treatment of malignant hypertension.
- Nitroprusside – an arteriolar and venous dilator, given as an intravenous infusion. Nitroprusside acts within seconds and has a duration of action of only two to five minutes. Thus, hypotension can be easily reversed by temporarily discontinuing the infusion, providing an advantage over the drugs listed below. However, the potential for cyanide toxicity limits the prolonged use of nitroprusside, particularly in patients with renal insufficiency.
- Nicardipine – an arteriolar dilator, given as an intravenous infusion.
- Clevidipine – a short-acting dihydropyridine calcium channel blocker. It reduces blood pressure without affecting cardiac filling pressures or causing reflex tachycardia.
- Labetalol – an alpha- and beta-adrenergic blocker, given as an intravenous bolus or infusion. Bolus followed by infusion.
- Fenoldopam – a peripheral dopamine-1 receptor agonist, given as an intravenous infusion.
- Oral agents — A slower onset of action and an inability to control the degree of BP reduction has limited the use of oral antihypertensive agents in the therapy of hypertensive crises. They may, however, be useful when there is no rapid access to the parenteral medications described above. Both sublingual nifedipine and sublingual captopril can substantially lower the BP within 10 to 30 minutes in many patients. A more rapid response is seen when liquid nifedipine is swallowed.
The major risk with oral agents is ischemic symptoms (e.g., angina pectoris, myocardial infarction, or stroke) due to an excessive and uncontrolled hypotensive response. Thus, their use should generally be avoided in the treatment of hypertensive crises if more controllable drugs are available.
There are hospital protocols for prevention, supplementing with thiamine in the presence of: history of alcohol misuse or related seizures, requirement for IV glucose, signs of malnutrition, poor diet, recent diarrhea or vomiting, peripheral neuropathy, intercurrent illness, delirium tremens or treatment for DTs, and others. Some experts advise parenteral thiamine should be given to all at-risk patients in the emergency room.
In the clinical diagnosis should be remembered that early symptoms are nonspecific, and it has been stated that WE may present nonspecific findings. There is consensus to provide water-soluble vitamins and minerals after gastric operations.
In some countries certain foods have been supplemented with thiamine, and have reduced WE cases. Improvement is difficult to quantify because they applied several different actions. Avoiding alcohol and having adequate nutrition reduces one of the main risk factors in developing Wernicke-Korsakoff syndrome.