Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
To overcome imatinib resistance and to increase responsiveness to TK inhibitors, four novel agents were later developed. The first, dasatinib, blocks several further oncogenic proteins, in addition to more potent inhibition of the BCR-ABL protein, and was initially approved in 2007 by the US FDA to treat CML in patients who were either resistant to or intolerant of imatinib. A second new TK inhibitor, nilotinib, was also approved by the FDA for the same indication. In 2010, nilotinib and dasatinib were also approved for first-line therapy, making three drugs in this class available for treatment of newly diagnosed CML. In 2012, Radotinib joined the class of novel agents in the inhibition of the BCR-ABL protein and was approved in South Korea for patients resistant to or intolerant of imatinib. Bosutinib received US FDA and EU European Medicines Agency approval on September 4, 2012 and 27 March 2013 respectively for the treatment of adult patients with Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) with resistance, or intolerance to prior therapy.
The role of chemotherapy or other pharmacologic treatments against JMML before bone marrow transplant has not been studied completely and its importance is still unknown. Chemotherapy by itself has proven unable to bring about long-term survival in JMML.
- Low-dose conventional chemotherapy: Studies have shown no influence from low-dose conventional chemotherapy on JMML patients’ length of survival. Some combinations of 6-mercaptopurine with other chemotherapy drugs have produced results such as decrease in organ size and increase or normalization of platelet and leukocyte count.
- Intensive chemotherapy: Complete remission with ongoing durability from JMML has not been possible through use of intensive chemotherapy, but it is still used at times because it has improved the condition of a small but significant number of JMML patients who do not display an aggressive disease. The COG JMML study administers 2 cycles of fludarabine and cytarabine for 5 consecutive days along with 13-cis retinoic acid during and afterwards. The EWOG-MDS JMML study, however, does not recommend intensive chemotherapy before bone marrow transplant.
- 13-cis retinoic acid (Isotretinoin): In the lab, 13-cis-retinoic acid has inhibited the growth of JMML cells. The COG JMML study therefore includes 13-cis-retinoic acid in its treatment protocol, though its therapeutic value for JMML remains controversial.
The theory behind splenectomy in JMML is that the spleen may trap leukemic cells, leading to the spleen's enlargement, by harboring dormant JMML cells that are not eradicated by radiation therapy or chemotherapy for the active leukemia cells, thus leading to later relapse if the spleen is not removed. However, the impact of splenectomy on post-transplant relapse, though, is unknown. The COG JMML study includes splenectomy as a standard component of treatment for all clinically stable patients. The EWOG-MDS JMML study allows each child’s physician to determine whether or not a splenectomy should be done, and large spleens are commonly removed prior to bone marrow transplant. When a splenectomy is scheduled, JMML patients are advised to receive vaccines against "Streptococcus pneumoniae" and "Haemophilus influenza" at least 2 weeks prior to the procedure. Following splenectomy, penicillin may be administered daily in order to protect the patient against bacterial infections that the spleen would otherwise have protected against; this daily preventative regimen will often continue indefinitely.
After stable remission is induced, the standard of care is to undergo 2 years of maintenance chemotherapy with methotrexate, mercaptopurine and ATRA. A significant portion of patients will relapse without consolidation therapy. In the 2000 European APL study, the 2-year relapse rate for those that did not receive consolidation chemotherapy (ATRA not included) therapy was 27% compared to 11% in those that did receive consolidation therapy (p<0.01). Likewise in the 2000 US APL study, the survival rates in those receiving ATRA maintenance was 61% compared to just 36% without ATRA maintenance.
In the past, antimetabolites (e.g., cytarabine, hydroxyurea), alkylating agents, interferon alfa 2b, and steroids were used as treatments of CML in the chronic phase, but since the 2000s have been replaced by Bcr-Abl tyrosine-kinase inhibitors drugs that specifically target BCR-ABL, the constitutively activated tyrosine kinase fusion protein caused by the Philadelphia chromosome translocation. Despite the move to replacing cytotoxic antineoplastics (standard anticancer drugs) with tyrosine kinase inhibitors sometimes hydroxyurea is still used to counteract the high leukocyte counts encountered during treatment with tyrosine kinase inhibitors like imatinib; in these situations it may be the preferred myelosuppressive agent due to its relative lack of leukemogenic effects and hence the relative lack of potential for secondary hematologic malignancies to result from treatment. IRIS, an international study that compared interferon/cytarabine combination and the first of these new drugs imatinib, with long-term follow up, demonstrated the clear superiority of tyrosine-kinase-targeted inhibition over existing treatments.
Arsenic trioxide (AsO) is currently being evaluated for treatment of relapsed / refractory disease. Remission with arsenic trioxide has been reported.
Studies have shown arsenic reorganizes nuclear bodies and degrades the mutant PML-RAR fusion protein. Arsenic also increases caspase activity which then induces apoptosis. It does reduce the relapse rate for high risk patients. In Japan a synthetic retinoid, tamibarotene, is licensed for use as a treatment for ATRA-resistant APL.
Selection of biological targets on the basis of their combinatorial effects on the leukemic lymphoblasts can lead to clinical trials for improvement in the effects of ALL treatment. Tyrosine-kinase inhibitors (TKIs), such as Imatinib, are often incorporated into the treatment plan for patients with "Bcr-Abl1+ (Ph+)" ALL. However, this subtype of ALL is frequently resistant to the combination of chemotherapy and TKIs and allogeneic stem cell transplantation is often recommended upon relapse.
Blinatumomab, a CD19-CD3 bi-specific monoclonal murine antibody, currently shows promise as a novel pharmacotherapy. By engaging the CD3 T-cell with the CD19 receptor on B cells, it triggers a response to induce the release of inflammatory cytokines, cytotoxic proteins and proliferation of T cells to kill CD19 B cells.
Radiation therapy (or radiotherapy) is used on painful bony areas, in high disease burdens, or as part of the preparations for a bone marrow transplant (total body irradiation). In the past, physicians commonly utilized radiation in the form of whole-brain radiation for central nervous system prophylaxis, to prevent occurrence and/or recurrence of leukemia in the brain. Recent studies showed that CNS chemotherapy provided results as favorable but with less developmental side-effects. As a result, the use of whole-brain radiation has been more limited. Most specialists in adult leukemia have abandoned the use of radiation therapy for CNS prophylaxis, instead using intrathecal chemotherapy.
First-line treatment of AML consists primarily of chemotherapy, and is divided into two phases: induction and postremission (or consolidation) therapy. The goal of induction therapy is to achieve a complete remission by reducing the number of leukemic cells to an undetectable level; the goal of consolidation therapy is to eliminate any residual undetectable disease and achieve a cure. Hematopoietic stem cell transplantation is usually considered if induction chemotherapy fails or after a person relapses, although transplantation is also sometimes used as front-line therapy for people with high-risk disease. Efforts to use tyrosine kinase inhibitors in AML continue.
Many different anti-cancer drugs are effective for the treatment of AML. Treatments vary somewhat according to the age of the patient and according to the specific subtype of AML. Overall, the strategy is to control bone marrow and systemic (whole-body) disease, while offering specific treatment for the central nervous system (CNS), if involved.
In general, most oncologists rely on combinations of drugs for the initial, "induction phase" of chemotherapy. Such combination chemotherapy usually offers the benefits of early remission and a lower risk of disease resistance. "Consolidation" and "maintenance" treatments are intended to prevent disease recurrence. Consolidation treatment often entails a repetition of induction chemotherapy or the intensification chemotherapy with additional drugs. By contrast, maintenance treatment involves drug doses that are lower than those administered during the induction phase.
For most people with CLL, it is incurable by present treatments, so treatment is directed towards suppressing the disease for many years, rather than totally and permanently eliminating it. The primary chemotherapeutic plan is combination chemotherapy with chlorambucil or cyclophosphamide, plus a corticosteroid such as prednisone or prednisolone. The use of a corticosteroid has the additional benefit of suppressing some related autoimmune diseases, such as immunohemolytic anemia or immune-mediated thrombocytopenia. In resistant cases, single-agent treatments with nucleoside drugs such as fludarabine, pentostatin, or cladribine may be successful. Younger and healthier patients may choose allogeneic or autologous bone marrow transplantation in the hope of a permanent cure.
If a patient has the symptoms like leukemia, such as persistent fever or difficulty of hemostais, he has to see the doctors.
BAL is very hard to treat. Most of patients receive treatment based on the morphology of blasts and get AML or ALL induction chemotherapy. The induction drug for AML such as cytarabine and anthracycline, drug for ALL such as prednisolone, dexamethasone, vincristine, asparaginase or daunorubicin is common for BAL remission induction therapy. Recently, researches showed that using both myeloid and lymphoid induction therapy may be better for prognosis.
Chemotherapy is strong side effects such as typhlitis, gastrointestinal distress, anemia, fatigue, hair loss, nausea and vomiting, etc. Thus, the different dose and times of chemotherapy for different individuals is important.
If the patients enter fully remission, the consolidation with stem cell transplantation is highly recommended.
While investigational drug therapies exist, no curative drug treatment exists for any of the MPDs. The goal of treatment for ET and PV is prevention of thrombohemorrhagic complications. The goal of treatment for MF is amelioration of anemia, splenomegaly, and other symptoms. Low-dose aspirin is effective in PV and ET. Tyrosine kinase inhibitors like imatinib have improved the prognosis of CML patients to near-normal life expectancy.
Recently, a "JAK2" inhibitor, namely ruxolitinib, has been approved for use in primary myelofibrosis. Trials of these inhibitors are in progress for the treatment of the other myeloproliferative neoplasms.
The treatment of CMML remains challenging due to the lack of clinical trials investigating the disease as its own clinical entity. It is often grouped with MDS in clinical trials, and for this reason the treatment of CMML is very similar to that of MDS. Most cases are dealt with as supportive rather than curative because most therapies do not effectively increase survival. Indications for treatment include the presence of B symptoms, symptomatic organ involvement, increasing blood counts, hyperleukocytosis, leukostasis and/or worsening cytopaenias.
Blood transfusions and EPO administration are used to raise haemoglobin levels in cases with anaemia.
Azacitidine is a drug approved by the US Food & Drug Administration (FDA) for the treatment of CMML and by the European Medicines Agency for high risk non-proliferative CMML with 10-19% marrow blasts. It is a cytidine analogue that causes hypomethylation of DNA by inhibition of DNA methyltransferase. Decitabine is a similar drug to azacitidine and is approved by the FDA for treatments of all subtypes of MDS, including CMML. Hydroxyurea is a chemotherapy that is used in the myeloproliferative form of CMML to reduce cell numbers.
Haematopoietic stem cell transplant remains the only curative treatment for CMML. However, due to the late age of onset and presence of other illnesses, this form of treatment is often not possible.
AML-M5 is treated with intensive chemotherapy (such as anthracyclines) or with bone marrow transplantation.
All FAB subtypes except M3 are usually given induction chemotherapy with cytarabine (ara-C) and an anthracycline (most often daunorubicin). This induction chemotherapy regimen is known as "7+3" (or "3+7"), because the cytarabine is given as a continuous IV infusion for seven consecutive days while the anthracycline is given for three consecutive days as an IV push. Up to 70% of people with AML will achieve a remission with this protocol. Other alternative induction regimens, including high-dose cytarabine alone, FLAG-like regimens or investigational agents, may also be used. Because of the toxic effects of therapy, including myelosuppression and an increased risk of infection, induction chemotherapy may not be offered to the very elderly, and the options may include less intense chemotherapy or palliative care.
The M3 subtype of AML, also known as acute promyelocytic leukemia (APL), is almost universally treated with the drug all-"trans"-retinoic acid (ATRA) in addition to induction chemotherapy, usually an anthracycline. Care must be taken to prevent disseminated intravascular coagulation (DIC), complicating the treatment of APL when the promyelocytes release the contents of their granules into the peripheral circulation. APL is eminently curable, with well-documented treatment protocols.
The goal of the induction phase is to reach a complete remission. Complete remission does not mean the disease has been cured; rather, it signifies no disease can be detected with available diagnostic methods. Complete remission is obtained in about 50%–75% of newly diagnosed adults, although this may vary based on the prognostic factors described above. The length of remission depends on the prognostic features of the original leukemia. In general, all remissions will fail without additional consolidation therapy.
The treatment a child will undergo is based on the child's age, overall health, medical history, their tolerance for certain medications, procedures, and therapies, along with the parents' opinion and preference.
- Chemotherapy is a treatment that uses drugs to interfere with the cancer cells ability to grow and reproduce. Chemotherapy can be used alone or in combination with other therapies. Chemotherapy can be given either as a pill to swallow orally, an injection into the fat or muscle, through an IV directly into the bloodstream, or directly into the spinal column.
- A stem cell transplant is a process by which healthy cells are infused into the body. A stem-cell transplant can help the human body make enough healthy white blood cells, red blood cells, or platelets, and reduce the risk of life-threatening infections, anemia, and bleeding. It is also known as a bone-marrow transplant or an umbilical-cord blood transplant, depending on the source of the stem cells. Stem cell transplants can use the cells from the same person, called an autologous stem cell transplant or they can use stem cells from other people, known as an allogenic stem cell transplant. In some cases, the parents of a child with childhood leukemia may conceive a saviour sibling by preimplantation genetic diagnosis to be an appropriate match for the HLA antigen.
Natural killer (NK) cell therapy is used in pediatrics for children with relapsed lymphoid leukemia. These patients normally have a resistance to chemotherapy, therefore, in order to continue on, must receive some kind of therapy. In some cases, NK cell therapy is a choice.
NK cells are known for their ability to eradicate tumor cells without any prior sensitization to them. One problem when using NK cells in order to fight off lymphoid leukemia is the fact that it is hard to amount enough of them to be effective. One can receive donations of NK cells from parents or relatives through bone marrow transplants. There are also the issues of cost, purity and safety. Unfortunately, there is always the possibility of Graft vs host disease while transplanting bone marrow.
NK cell therapy is a possible treatment for many different cancers such as Malignant glioma.
The goals of therapy are to control symptoms, improve quality of life, improve overall survival, and decrease progression to AML.
The IPSS scoring system can help triage patients for more aggressive treatment (i.e. bone marrow transplant) as well as help determine the best timing of this therapy. Supportive care with blood products and hematopoietic growth factors (e.g. erythropoietin) is the mainstay of therapy. The regulatory environment for the use of erythropoietins is evolving, according to a recent US Medicare National coverage determination. No comment on the use of hematopoeitic growth factors for MDS was made in that document though.
Three agents have been approved by the FDA for the treatment of MDS:
1. 5-azacytidine: 21-month median survival
2. Decitabine: Complete response rate reported as high as 43%. A phase I study has shown efficacy in AML when decitabine is combined with valproic acid.
3. Lenalidomide: Effective in reducing red blood cell transfusion requirement in patients with the chromosome 5q deletion subtype of MDS
Chemotherapy with the hypomethylating agents 5-azacytidine and decitabine has been shown to decrease blood transfusion requirements and to retard the progression of MDS to AML. Lenalidomide was approved by the FDA in December 2005 only for use in the 5q- syndrome. In the United States, treatment of MDS with lenalidomide costs about $9,200 per month.
Stem cell transplantation, particularly in younger (i.e. less than 40 years of age) and more severely affected patients, offers the potential for curative therapy. Success of bone marrow transplantation has been found to correlate with severity of MDS as determined by the IPSS score, with patients having a more favorable IPSS score tending to have a more favorable outcome with transplantation.
Iron overload can develop in MDS as a result of the RBC transfusions which are a major part of the supportive care for anemic MDS patients. Although the specific therapies patients receive may alleviate the RBC transfusion need in some cases, many MDS patients may not respond to these treatments, thus may develop iron overload from repeated RBC transfusions.
Patients requiring relatively large numbers of RBC transfusions can experience the adverse effect of chronic iron overload on their liver, heart, and endocrine functions. The resulting organ dysfunction from transfusional iron overload might be a contributor to increased illness and death in early-stage MDS.
For patients requiring many RBC transfusions, serum ferritin levels, number of RBC transfusions received, and associated organ dysfunction (heart, liver, and pancreas) should be monitored to determine iron levels. Monitoring serum ferritin may also be useful, aiming to decrease ferritin levels to .
Currently, two iron chelators are available in the US, deferoxamine for intravenous use and deferasirox for oral use. These options now provide potentially useful drugs for treating this iron overload problem. A third chelating agent is available in Europe, deferiprone for oral use, but not available in the US.
Clinical trials in the MDS are ongoing with iron chelating agents to address the question of whether iron chelation alters the natural history of patients with MDS who are transfusion dependent. Reversal of some of the consequences of iron overload in MDS by iron chelation therapy have been shown.
Both the MDS Foundation and the National Comprehensive Cancer Network MDS Guidelines Panel have recommended that chelation therapy be considered to decrease iron overload in selected MDS patients. Evidence also suggests a potential value exists to iron chelation in patients who will undergo a stem cell transplant.
Although deferasirox is generally well tolerated (other than episodes of gastrointestinal distress and kidney dysfunction in some patients), recently a safety warning by the FDA and Novartis was added to deferasirox treatment guidelines. Following postmarketing use of deferasirox, rare cases of acute kidney failure or liver failure occurred, some resulting in death. Due to this, patients should be closely monitored on deferasirox therapy prior to the start of therapy and regularly thereafter.
Generally, acute myeloid leukemia is treated using chemotherapy consisting of an induction phase and consolidation phase (Dohner et al., 2009). Patients may also consider hematopoietic stem cell transplantation as a second mode of tackling the cancer. The most novel research is being done in tyrosine kinase inhibitors; however M2 acute myeloid leukemia treatment research involves molecules that inhibit the fusion oncoprotein AML1-ETO. Therefore, in terms of M2 subtype acute myeloid leukemia, the most prominent target is the abnormal AML1-ETO fusion protein. Similarly, chronic myeloid leukemia (CML) is comparable to acute myeloid leukemia M2 because it also forms a fusion oncoprotein – BCR-Abl. The developed tyrosine kinase inhibitor, imatinib mesylate, has had a tremendous effect on stopping cancer progression in the majority of chronic myeloid leukemia patients. BCR-Abl is constitutively active due chromosome translocation; therefore it over-phosphorylates the tyrosine kinase. Imatinib mesylate works to block BCR-Abl’s activity by blocking the active kinase domain (Fava et al., 2011).
Celastrol is a compound extracted from Tripterygium wilfordii that has anti-cancer properties. It was found to inhibit cell proliferation through the down regulation of AML1-ETO fusion oncoprotein. Celastrol inhibits the fusion oncoprotein by inducing mitochondrial instability and initiating caspase activity The decrease of AML1-ETO also results in lower levels of C-KIT kinases, Akt/PKB, STAT3, and Erk1/2 – all of which are involved in cell signaling and gene transcription (Yu et al., 2016).
Histone deacetylase inhibitors such as valproic acid (VPA), vorinostat, and all-trans retinoic acid (ATRA) are effective in targeting acute myeloid leukemia with the AML1-ETO fusion protein. The HDAC inhibitors are known to induce apoptosis through accumulation of DNA damage, inhibition of DNA repair, and activation of caspases. These inhibitors are extra sensitive to the fusion proteins. Vorinostat has been proven to cause a greater accumulation of DNA damage in fusion protein expressing cells and is directly correlated with the reduction of DNA repair enzymes (Garcia et al., 2008). Romidepsin, a drug in phase two clinical trials, has demonstrated higher efficacy in patients with AML1-ETO fusion protein leukemia (Odenike et al., 2008). Although many clinical evaluations have proven HDAC inhibitors have a promising effect on M2 subtype acute myeloid leukemia, it has not been approved as an official treatment.
In t(6;9) acute myeloid leukemia, FLT3-ITD and the DEK-NUP214 protein are potential targets for treatment. Sorafenib is a kinase inhibitor used as a treatment for kidney and liver cancer. The kinase inhibitor blocks serine-threonine kinase RAF-1 as well as FLT-ITD (Kindler, 2010). The drug has been proven to be effective in reducing FLT3-ITD overexpression (Metzelder et al., 2009). In patients with DEK-NUP214, it was found that the fusion oncoprotein caused an upregulation of mTORC1 (Sanden et al., 2013). Thus, a mTORC inhibitor could be a potential treatment.
Treatment for erythroleukemia generally follows that for other types of AML, not otherwise specified. It consists of chemotherapy, frequently consisting of
cytarabine, daunorubicin, and idarubicin. It can also involve bone marrow transplantation.
As described above, chloromas should always be considered manifestations of systemic disease, rather than isolated local phenomena, and treated as such. In the patient with newly diagnosed leukemia and an associated chloroma, systemic chemotherapy against the leukemia is typically used as the first-line treatment, unless an indication for local treatment of the chloroma (e.g. compromise of the spinal cord) emerges. Chloromas are typically quite sensitive to standard antileukemic chemotherapy. Allogeneic hematopoietic stem cell transplantation should be considered in fit patients with suitable available donor, as long term remissions have been reported.
If the chloroma is persistent after completion of induction chemotherapy, local treatment, such as surgery or radiation therapy, may be considered, although neither has an effect on survival.
Patients presenting with a primary chloroma typically receive systemic chemotherapy, as development of acute leukemia is nearly universal in the short term after detection of the chloroma.
Patients treated for acute leukemia who relapse with an isolated chloroma are typically treated with systemic therapy for relapsed leukemia. However, as with any relapsed leukemia, outcomes are unfortunately poor.
Patients with "preleukemic" conditions, such as myelodysplastic syndromes or myeloproliferative syndromes, who develop a chloroma are often treated as if they have transformed to acute leukemia.
Immunoglobulin E (IgE) is important in mast cell function. Immunotherapy with anti-IgE immunoglobulin raised in sheep resulted in a transient decrease in the numbers of circulating mast cells in one patient with mast cell leukemia. Although splenectomy has led to brief responses in patients with mast cell leukemia, no firm conclusions as to the efficacy of this treatment are possible. Chemotherapy with combination of cytosine arabinoside and either idarubicin, daunomycin, or mitoxantrone as for acute myeloid leukemia has been used. Stem cell transplantation is an option, although no experience exists concerning responses and outcome.
If treatment has been successful ("complete" or "partial remission"), a person is generally followed up at regular intervals to detect recurrence and monitor for "secondary malignancy" (an uncommon side-effect of some chemotherapy and radiotherapy regimens—the appearance of another form of cancer). In the follow-up, which should be done at pre-determined regular intervals, general anamnesis is combined with complete blood count and determination of lactate dehydrogenase or thymidine kinase in serum.