Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Untreated, polycythemia vera can be fatal. Research has found that the "1.5-3 years of median survival in the absence of therapy has been extended to at least 10-20 years because of new therapeutic tools."
As the condition cannot be cured, treatment focuses on treating symptoms and reducing thrombotic complications by reducing the erythrocyte levels.
Phlebotomy is one form of treatment, which often may be combined with other therapies. The removal of blood from the body induces iron deficiency, thereby decreasing the haemoglobin / hematocrit level, and reducing the risk of blood clots. Phlebotomy is typically performed to bring their hematocrit (red blood cell percentage) down below 45 for men or 42 for women. It has been observed that phlebotomy also improves cognitive impairment.
Low dose aspirin (75–81 mg daily) is often prescribed. Research has shown that aspirin reduces the risk for various thrombotic complications.
Chemotherapy for polycythemia may be used, either for maintenance, or when the rate of bloodlettings required to maintain normal hematocrit is not acceptable, or when there is significant thrombocytosis or intractable pruritus. This is usually with a "cytoreductive agent" (hydroxyurea, also known as hydroxycarbamide).
The tendency of some practitioners to avoid chemotherapy if possible, especially in young patients, is a result of research indicating possible increased risk of transformation to acute myelogenous leukemia (AML). While hydroxyurea is considered safer in this aspect, there is still some debate about its long-term safety.
In the past, injection of radioactive isotopes (principally phosphorus-32) was used as another means to suppress the bone marrow. Such treatment is now avoided due to a high rate of AML transformation.
Other therapies include interferon injections, and in cases where secondary thrombocytosis (high platelet count) is present, anagrelide may be prescribed.
Bone marrow transplants are rarely undertaken in polycythemia patients; since this condition is non-fatal if treated and monitored, the benefits rarely outweigh the risks involved in such a procedure.
There are indications that with certain genetic markers, erlotinib may be an additional treatment option for this condition.
Selective JAK2 inhibitors are being investigated "in vitro" and in clinical trials.
Hydroxycarbamide, interferon-α and anagrelide can lower the platelet count. Low-dose aspirin is used to reduce the risk of blood clot formation unless the platelet count is very high, where there is a risk of bleeding from the disease and hence this measure would be counter-productive (as they increase one's risk for bleeds).
The PT1 study compared hydroxyurea plus aspirin to anagrelide plus aspirin as initial therapy for ET. Hydroxyurea treated patients had a lower incidence of arterial thrombosis, lower incidence of severe bleeding and lower incidence of transformation to myelofibrosis, but the risk of venous thrombosis was higher with hydroxycarbamide than with anagrelide. It is unknown whether the results are applicable to all ET patients. In people with symptomatic ET and extremely high platelet counts (exceeding 1 million), plateletpheresis can be used to remove platelets from the blood to reduce the risk of thrombosis.
Not all those affected will require treatment at presentation. People are usually split up into low and high risk for bleeding/blood clotting groups (based on their age, their medical history, their blood counts and their lifestyles), low risk individuals are usually treated with aspirin, whereas those at high risk are given hydroxycarbamide and/or other treatments that reduce platelet count (such as interferon-α and anagrelide).
Often, no treatment is required or necessary for reactive thrombocytosis. In cases of reactive thrombocytosis of more than 1,000x10/L, it may be considered to administer daily low dose aspirin (such as 65 mg) to minimize the risk of stroke or thrombosis.
However, in primary thrombocytosis, if platelet counts are over 750,000 or 1,000,000, and especially if there are other risk factors for thrombosis, treatment may be needed. Selective use of aspirin at low doses is thought to be protective. Extremely high platelet counts in primary thrombocytosis can be treated with hydroxyurea (a cytoreducing agent) or anagrelide (Agrylin).
In Jak-2 positive disorders, ruxolitinib (Jakafi) can be effective.
The one known curative treatment is allogeneic stem cell transplantation, but this approach involves significant risks.
Other treatment options are largely supportive, and do not alter the course of the disorder (with the possible exception of ruxolitinib, as discussed below). These options may include regular folic acid, allopurinol or blood transfusions. Dexamethasone, alpha-interferon and hydroxyurea (also known as hydroxycarbamide) may play a role.
Lenalidomide and thalidomide may be used in its treatment, though peripheral neuropathy is a common troublesome side-effect.
Frequent blood transfusions may also be required. If the patient is diabetic and is taking a sulfonylurea, this should be stopped periodically to rule out drug-induced thrombocytopenia.
Splenectomy is sometimes considered as a treatment option for patients with myelofibrosis in whom massive splenomegaly is contributing to anaemia because of hypersplenism, particularly if they have a heavy requirement for blood transfusions. However, splenectomy in the presence of massive splenomegaly is a high-risk procedure, with a mortality risk as high as 3% in some studies.
In November 2011, the FDA approved ruxolitinib (Jakafi) as a treatment for intermediate or high-risk myelofibrosis. Ruxolitinib serves as an inhibitor of JAK 1 and 2.
The "New England Journal of Medicine" (NEJM) published results from two Phase III studies of ruxolitinib. These data showed that the treatment significantly reduced spleen volume, improved symptoms of myelofibrosis, and was associated with improved overall survival compared to placebo.
Occasionally, the anemia is so severe that support with transfusion is required. These patients usually do not respond to erythropoietin therapy. Some cases have been reported that the anemia is reversed or heme level is improved through use of moderate to high doses of pyrodoxine (vitamin B). In severe cases of SBA, bone marrow transplant is also an option with limited information about the success rate. Some cases are listed on MedLine and various other medical sites. In the case of isoniazid-induced sideroblastic anemia, the addition of B is sufficient to correct the anemia. Desferrioxamine, a chelating agent, is used to treat iron overload from transfusions.
Therapeutic phlebotomy can be used to manage iron overload.
While investigational drug therapies exist, no curative drug treatment exists for any of the MPDs. The goal of treatment for ET and PV is prevention of thrombohemorrhagic complications. The goal of treatment for MF is amelioration of anemia, splenomegaly, and other symptoms. Low-dose aspirin is effective in PV and ET. Tyrosine kinase inhibitors like imatinib have improved the prognosis of CML patients to near-normal life expectancy.
Recently, a "JAK2" inhibitor, namely ruxolitinib, has been approved for use in primary myelofibrosis. Trials of these inhibitors are in progress for the treatment of the other myeloproliferative neoplasms.
Treatment of this disorder involves treatment of the underlying cancer.
Sideroblastic anemias are often described as responsive or non-responsive in terms of increased hemoglobin levels to pharmacological doses of vitamin B.
1- Congenital: 80% are responsive, though the anemia does not completely resolve.
2- Acquired clonal: 40% are responsive, but the response may be minimal.
3- Acquired reversible: 60% are responsive, but course depends on treatment of the underlying cause.
Severe refractory sideroblastic anemias requiring regular transfusions and/or that undergo leukemic transformation (5-10%) significantly reduce life expectancy.
Plasmapheresis may be used to decrease viscosity in the case of myeloma, whereas leukapheresis or phlebotomy may be employed in a leukemic or polycythemic crisis, respectively. Blood transfusions should be used with caution as they can increase serum viscosity. Hydration is a temporizing measure to employ while preparing pheresis. Even after treatment, the condition will recur unless the underlying disorder is treated.
Treatment of acquired dysfibrinogenemia follows the guidelines recommended for congenital dysfibrinogenemia. In addition, treatment of any disease thought to be responsible for the dysfibrinogenemia might be useful. For example, therapeutic plasma exchange and chemotherapy to reduce monoclonal antibody levels has been used successfully to reverse otherwise uncontrollable bleeding in cases of multiple myeloma-associated dysfibrinogenemia.
Polycythemia (also known as polycythaemia or polyglobulia) is a disease state in which the hematocrit (the volume percentage of red blood cells in the blood) is elevated.
It can be due to an increase in the number of red blood cells ("absolute polycythemia") or to a decrease in the volume of plasma ("relative polycythemia"). Polycythemia is sometimes called erythrocytosis, but the terms are not synonymous, because polycythemia refers to any increase in red blood cells, whereas erythrocytosis only refers to a documented increase of red cell mass.
The emergency treatment of polycythemia (e.g., in hyperviscosity or thrombosis) is by phlebotomy (removal of blood from the circulation). Depending on the underlying cause, phlebotomy may also be used on a regular basis to reduce the hematocrit. Cytostatics such as busulfan and hydroxyurea are sometimes used for long-term management of polycythemia.
Secondary polycythemia is caused by either natural or artificial increases in the production of erythropoietin, hence an increased production of erythrocytes. In secondary polycythemia, 6 to 8 million and occasionally 9 million erythrocytes may occur per millimeter of blood. Secondary polycythemia resolves when the underlying cause is treated.
Secondary polycythemia in which the production of erythropoietin increases appropriately is called physiologic polycythemia.
Conditions which may result in a physiologically appropriate polycythemia include:
- Altitude related - This physiologic polycythemia is a normal adaptation to living at high altitudes (see altitude sickness). Many athletes train at high altitude to take advantage of this effect — a legal form of blood doping. Some individuals believe athletes with primary polycythemia may have a competitive advantage due to greater stamina. However, this has yet to be proven due to the multifaceted complications associated with this condition.
- Hypoxic disease-associated - for example in cyanotic heart disease where blood oxygen levels are reduced significantly, may also occur as a result of hypoxic lung disease such as COPD and as a result of chronic obstructive sleep apnea.
- Iatrogenic - Secondary polycythemia can be induced directly by phlebotomy (blood letting) to withdraw some blood, concentrate the erythrocytes, and return them to the body.
- Genetic - Heritable causes of secondary polycythemia also exist and are associated with abnormalities in hemoglobin oxygen release. This includes patients who have a special form of hemoglobin known as Hb Chesapeake, which has a greater inherent affinity for oxygen than normal adult hemoglobin. This reduces oxygen delivery to the kidneys, causing increased erythropoietin production and a resultant polycythemia. Hemoglobin Kempsey also produces a similar clinical picture. These conditions are relatively uncommon.
Conditions where the secondary polycythemia is not as a result of physiologic adaptation and occurs irrespective of body needs include:
- Neoplasms - Renal-cell carcinoma or liver tumors, von Hippel-Lindau disease, and endocrine abnormalities including pheochromocytoma and adrenal adenoma with Cushing's syndrome.
- People whose testosterone levels are high because of the use of anabolic steroids, including athletes who abuse steroids, or people on testosterone replacement for hypogonadism or transgender hormone replacement therapy, as well as people who take erythropoietin, may develop secondary polycythemia.
Individuals experiencing episodic bleeding as a result of congenital dysfibrinogenemia should be treated at a center specialized in treating hemophilia. They should avoid all medications that interfere with normal platelet function. During bleeding episodes, treatment with fibrinogen concentrates or in emergencies or when these concentrates are unavailable, infusions of fresh frozen plasma and/or cryoprecipitate (a fibrinogen-rich plasma fraction) to maintain fibrinogen activity levels >1 gram/liter. Tranexamic acid or fibrinogen concentrates are recommended for prophylactic treatment prior to minor surgery while fibrinogen concentrates are recommended prior to major surgery with fibrinogen concentrates usage seeking to maintain fibrinogen activity levels at >1 gram/liter. Women undergoing vaginal or Cesarean child birth should be treated at a hemophilia center with fibrinogen concentrates to maintain fibrinogen activity levels at 1.5 gram/liter. The latter individuals require careful observation for bleeding during their post-partum periods.
Individuals experiencing episodic thrombosis as a result of congenital dysfibrinogenemia should also be treated at a center specialized in treating hemophilia using antithrombotic agents. They should be instructed on antithrombotic behavioral methods fur use in high risk situations such as long car rides and air flights. Venous thrombosis should be treated with low molecular weight heparin for a period that depends on personal and family history of thrombosis events. Prophylactic treatment prior to minor surgery should avoid fibrinogen supplementation and use prophylactic anticoagulation measures; prior to major surgery, fibrinogen supplementation should be used only if serious bleeding occurs; otherwise, prophylactic anticoagulation measures are recommended.
Several medications can cause generalized or localized acquired hypertrichosis including:
Anticonvulsants: phenytoin
Immunosuppressants: cyclosporine
Vasodilators: diazoxide and minoxidil
Antibiotics: streptomycin
Diuretics: acetazolamide
Photosensitizes: Psoralen.
The acquired hypertrichosis is usually reversible once these medications are discontinued.
There is no cure for any congenital forms of hypertrichosis. The treatment for acquired hypertrichosis is based on attempting to address the underlying cause. Acquired forms of hypertrichosis have a variety of sources, and are usually treated by removing the factor causing hypertrichosis, e.g. a medication with undesired side-effects. All hypertrichosis, congenital or acquired, can be reduced through hair removal. Hair removal treatments are categorized into two principal subdivisions: temporary removal and permanent removal. Treatment may have adverse effects by causing scarring, dermatitis, or hypersensitivity.
Temporary hair removal may last from several hours to several weeks, depending on the method used. These procedures are purely cosmetic. Depilation methods, such as trimming, shaving, and depilatories, remove hair to the level of the skin and produce results that last several hours to several days. Epilation methods, such as plucking, electrology, waxing, sugaring, threading remove the entire hair from the root, the results lasting several days to several weeks.
Permanent hair removal uses chemicals, energy of various types, or a combination to target the cells that cause hair growth. Laser hair removal is an effective method of hair removal on hairs that have color. Laser cannot treat white hair. The laser targets the melanin color in the lower 1/3 of the hair follicle, which is the target zone. Electrolysis (electrology) uses electrical current, and/or localized heating. The U.S. Food and Drug Administration (FDA) allows only electrology to use the term "permanent hair removal" because it has been shown to be able treat all colors of hair.
Medication to reduce production of hair is currently under testing. One medicinal option suppresses testosterone by increasing the sex hormone-binding globulin. Another controls the overproduction of hair through the regulation of a luteinizing hormone.
Polycythemia vera is an uncommon neoplasm in which the bone marrow makes too many red blood cells. It may also result in the overproduction of white blood cells and platelets.
Most of the health concerns associated with polycythemia vera are caused by the blood being thicker as a result of the increased red blood cells. It is more common in the elderly and may be symptomatic or asymptomatic. Common signs and symptoms include itching (pruritus), and severe burning pain in the hands or feet that is usually accompanied by a reddish or bluish coloration of the skin. Patients with polycythemia vera are more likely to have gouty arthritis. Treatment consists primarily of phlebotomy.
Available treatment falls into two modalities: treating infections and boosting the immune system.
Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised. In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administrated, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.
Treatment is almost always aimed to control hemorrhages, treating underlying causes, and taking preventative steps before performing invasive surgeries.
Hypoprothrombinemia can be treated with periodic infusions of purified prothrombin complexes. These are typically used as treatment methods for severe bleeding cases in order to boost clotting ability and increasing levels of vitamin K-dependent coagulation factors.
1. A known treatment for hypoprothrombinemia is menadoxime.
2. Menatetrenone was also listed as a Antihaemorrhagic vitamin.
3. 4-Amino-2-methyl-1-naphthol (Vitamin K5) is another treatment for hypoprothrombinemia.
1. Vitamin K forms are administered orally or intravenously.
4. Other concentrates include Proplex T, Konyne 80, and Bebulin VH.
Fresh Frozen Plasma infusion (FFP) is a method used for continuous bleeding episodes, every 3-5 weeks for mention.
1. Used to treat various conditions related to low blood clotting factors.
2. Administered by intravenous injection and typically at a 15-20 ml/kg/dose.
3. Can be used to treat acute bleeding.
Sometimes, underlying causes cannot be controlled or determined, so management of symptoms and bleeding conditions should be priority in treatment.
Invasive options, such as surgery or clotting factor infusions, are required if previous methods do not suffice. Surgery is to be avoided, as it causes significant bleeding in patients with hypoprothrombinemia.
Prognosis for patients varies and is dependent on severity of the condition and how early the treatment is managed.
1. With proper treatment and care, most people go on to live a normal and healthy life.
2. With more severe cases, a hematologist will need to be seen throughout the patient's life in order to deal with bleeding and continued risks.
Thrombocytosis (or thrombocythemia) is the presence of high platelet counts in the blood, and can be either primary (also termed essential and caused by a myeloproliferative disease) or reactive (also termed secondary). Although often symptomless (particularly when it is a secondary reaction), it can predispose to thrombosis in some patients. Thrombocytosis can be contrasted with thrombocytopenia, a loss of platelets in the blood.
In a healthy individual, a normal platelet count ranges from 150,000 and 450,000 per mm³ (or microlitre) (150–450 x 10/L). These limits, however, are determined by the 2.5th lower and upper percentile, and a deviation does not necessary imply any form of disease. Nevertheless, counts over 750,000 (and especially over a million) are considered serious enough to warrant investigation and intervention.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
As reported by Dispenzieri "et al." Mayo Clinic treatment regimens are tailored to treat the clinical manifestations and prognosis for the rate of progression of the POEMS syndrome in each patient. In rare cases, patients may have minimal or no symptoms at presentation or after successful treatment of their disorder. These patients may be monitored every 2–3 months for symptoms and disease progression. Otherwise, treatment is divided based on the local versus systemic spread of its clonal plasma cells. Patients with one or two plasmacytoma bone lesions and no clonal plasma cells in their bone marrow biopsy specimens are treated by surgical removal or radiotherapy of their tumors. These treatments can relieve many of the syndromes clinical manifestations including neuropathies, have a 10-year overall survival of 70% and a 6-year progression-free survival of 62%. Patients with >2 plasmacytoma bone lesions and/or increases in bone marrow clonal plasma cells are treated with a low-dose or high-dose chemotherapy regimen, i.e. a corticosteroid such as dexamethasone plus an alkylating agents such as melphalan. Dosage regimens are selected on the basis of patient tolerance. Hematological response rates to the dexamethasone/melphalan regimens have been reported to be in the 80% range with neurological response rates approaching 100%. Patients successfully treated with the high-dose dexamethasone/melphalan regimen have been further treated with autologous stem cell transplantation. In 59 patients treated with the chemotherapy/transplantation regimen, the Mayo Clinic reported progression-free survival rates of 98%, 94%, and 75% at 1, 2, and 5 years, respectively.
Other treatment regiments are being studied. Immunomodulatory imide drugs such as thalidomide and lenalidomide have been used in combination with dexamethasone to treat POEMS syndrome patients. While the mechanism of action fo these immunomodulators are not clear, they do inhibit the production of cytokines suspected of contributing to POEMS syndrome such as VEGF, TNFα, and IL-6 and stimulate T cells and NK cells to increase their production of interferon gamma and interleukin 2 (see immunomodulatory imide drug's mechanism of action). A double blind study of 25 POEMS syndrome patients found significantly better results (VEGF reduction, neuromuscular function improvement, quality of life improvement) in patients treated with thalidomide plus dexamethasone compared to patients treated with a thalidomide placebo plus dexamethasone.
Since VEGF plays a central role in the symptoms of POEMS syndrome, some have tried bevacizumab, a monoclonal antibody directed against VEGF. While some reports were positive, others have reported capillary leak syndrome suspected to be the result of overly rapid lowering of VEGF levels. It therefore remains doubtful as to whether this will become part of standard treatment for POEMS syndrome.
The second stage features the reabsorption of the initially extravasated fluid and albumin from the tissues, and it usually lasts 1 to 2 days. Intravascular fluid overload leads to polyuria and can cause flash pulmonary edema and cardiac arrest, with possibly fatal consequences. Death from SCLS typically occurs during this recruitment phase because of pulmonary edema arising from excessive intravenous fluid administration during the earlier leak phase. The severity of the problem depends on to the quantity of fluid supplied in the initial phase, the damage that may have been sustained by the kidneys, and the promptness with which diuretics are administered to help the patient discharge the accumulated fluids quickly. A recent study of 59 acute episodes occurring in 37 hospitalized SCLS patients concluded that high-volume fluid therapy was independently associated with poorer clinical outcomes, and that the main complications of SCLS episodes were recovery-phase pulmonary edema (24%), cardiac arrhythmia (24%), compartment syndrome (20%), and acquired infections (19%).
The prevention of episodes of SCLS has involved two approaches. The first has long been identified with the Mayo Clinic, and it recommended treatment with beta agonists such as terbutaline, phosphodiesterase-inhibitor theophylline, and leukotriene-receptor antagonists montelukast sodium.
The rationale for use of these drugs was their ability to increase intracellular cyclic AMP (adenosine monophosphate) levels, which might counteract inflammatory signaling pathways that induce endothelial permeability. It was the standard of care until the early 2000s, but was sidelined afterwards because patients frequently experienced renewed episodes of SCLS, and because these drugs were poorly tolerated due to their unpleasant side effects.
The second, more recent approach pioneered in France during the last decade (early 2000s) involves monthly intravenous infusions of immunoglobulins (IVIG), with an initial dose of 2 gr/kg/month of body weight, which has proven very successful as per abundant case-report evidence from around the world.
IVIG has long been used for the treatment of autoimmune and MGUS-associated syndromes, because of its potential immunomodulatory and anticytokine properties. The precise mechanism of action of IVIG in patients with SCLS is unknown, but it is likely that it neutralizes their proinflammatory cytokines that provoke endothelial dysfunction. A recent review of clinical experience with 69 mostly European SCLS patients found that preventive treatment with IVIG was the strongest factor associated with their survival, such that an IVIG therapy should be the first-line preventive agent for SCLS patients. According to a recent NIH survey of patient experience, IVIG prophylaxis is associated with a dramatic reduction in the occurrence of SCLS episodes in most patients, with minimal side effects, such that it may be considered as frontline therapy for those with a clear-cut diagnosis of SCLS and a history of recurrent episodes.
In general, treatment for acquired partial lipodystrophy is limited to cosmetic, dietary, or medical options. Currently, no effective treatment exists to halt its progression.
Diet therapy has been shown to be of some value in the control of metabolic problems. The use of small, frequent feedings and partial substitution of medium-chain triglycerides for polyunsaturated fats appears to be beneficial.
Plastic surgery with implants of monolithic silicon rubber for correction of the deficient soft tissue of the face has been shown to be effective. False teeth may be useful in some cases for cosmetic reasons. Long-term treatment usually involves therapy for kidney and endocrine dysfunction.
Data on medications for APL are very limited. Thiazolidinediones have been used in the management of various types of lipodystrophies. They bind to peroxisome proliferator-activator receptor gamma (PPAR-gamma), which stimulates the transcription of genes responsible for growth and differentiation of adipocytes. A single report has suggested a beneficial effect from treatment with rosiglitazone on fat distribution in acquired partial lipodystrophy; however, preferential fat gain was in the lower body.
Direct drug therapy is administered according to the associated condition. Membranoproliferative glomerulonephritis and the presence of renal dysfunction largely determine the prognosis of acquired partial lipodystrophy. Standard guidelines for the management of renal disease should be followed. The course of membranoproliferative glomerulonephritis in acquired partial lipodystrophy has not been significantly altered by treatment with corticosteroids or cytotoxic medications. Recurrent bacterial infections, if severe, might be managed with prophylactic antibiotics.
Myelofibrosis, also known as osteomyelofibrosis, is a relatively rare bone marrow cancer. It is currently classified as a myeloproliferative neoplasm, in which the proliferation of an abnormal clone of hematopoietic stem cells in the bone marrow and other sites results in fibrosis, or the replacement of the marrow with scar tissue.
The term "myelofibrosis" alone usually refers to primary myelofibrosis (PMF), also known as chronic idiopathic myelofibrosis (cIMF); the terms idiopathic and primary mean that in these cases the disease is of unknown or spontaneous origin. This is in contrast with myelofibrosis that develops secondary to polycythemia vera or essential thrombocythaemia. Myelofibrosis is a form of myeloid metaplasia, which refers to a change in cell type in the blood-forming tissue of the bone marrow, and often the two terms are used synonymously. The terms agnogenic myeloid metaplasia and myelofibrosis with myeloid metaplasia (MMM) are also used to refer to primary myelofibrosis.