Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
As of 2015 there was no cure for CJD; some of the symptoms like twitching can be managed but otherwise treatment is palliative care.
As of 2017, there was no cure for BSE; some of the symptoms like twitching can be managed but otherwise treatment is palliative care.
A ban on feeding meat and bone meal to cattle has resulted in a strong reduction in cases in countries where the disease was present. In disease-free countries, control relies on import control, feeding regulations, and surveillance measures.
In UK and US slaughterhouses, the brain, spinal cord, trigeminal ganglia, intestines, eyes, and tonsils from cattle are classified as specified risk materials, and must be disposed of appropriately.
An enhanced BSE-related feed ban is in effect in both the United States and Canada to help improve prevention and elimination of BSE.
An experimental treatment was given to a Northern Irish teenager, Jonathan Simms, beginning in January 2003. The medication, called pentosan polysulphate (PPS) and used to treat interstitial cystitis, is infused into the patient's lateral ventricle within the brain. PPS does not seem to stop the disease from progressing, and both brain function and tissue continue to be lost. However, the treatment is alleged to slow the progression of the otherwise untreatable disease, and may have contributed to the longer than expected survival of the seven patients studied. Simms died in 2011. The CJD Therapy Advisory Group to the UK Health Departments advises that data are not sufficient to support claims that pentosan polysulphate is an effective treatment and suggests that further research in animal models is appropriate. A 2007 review of the treatment of 26 patients with PPS finds no proof of efficacy because of the lack of accepted objective criteria.
Scientists have investigated using RNA interference to slow the progression of scrapie in mice. The RNA blocks production of the protein that the CJD process transforms into prions. This research is unlikely to lead to a human therapy for many years.
Both amphotericin B and doxorubicin have been investigated as potentially effective against CJD, but as yet there is no strong evidence that either drug is effective in stopping the disease. Further study has been taken with other medical drugs, but none are effective. However, anticonvulsants and anxiolytic agents, such as valproate or a benzodiazepine, may be administered to relieve associated symptoms.
Scientists from the University of California, San Francisco are currently running a treatment trial for sporadic CJD using quinacrine, a medicine originally created for malaria. Pilot studies showed quinacrine permanently cleared abnormal prion proteins from cell cultures, but results have not yet been published on their clinical study. The efficacy of quinacrine was also assessed in a rigorous clinical trial in the UK and the results were published in Lancet Neurology,
and concluded that quinacrine had no measurable effect on the clinical course of CJD.
In a 2013 paper published in the Proceedings of the National Academy of Sciences, scientists from The Scripps Research Institute reported that Astemizole, a medication approved for human use, has been found to have anti-prion activity and may lead to a treatment for Creutzfeldt–Jakob disease.
Variant Creutzfeldt–Jakob disease (vCJD) or new variant Creutzfeldt–Jakob disease (nvCJD) is a transmissible spongiform encephalopathy which was identified in 1996 by the National CJD Surveillance Unit in Edinburgh, Scotland. It is always fatal and is caused by prions, which are mis-folded proteins. Over 170 cases of vCJD have been recorded in the United Kingdom, and around 30 cases in the rest of the world. The fact that the epidemiology of the disease coincided with an epidemic of bovine spongiform encephalopathy led to the hypothesis that consumption of BSE-infected beef caused the disease. It is a different disease from Sporadic and Familial Creutzfeldt–Jakob disease, though it is believed to be caused by the same pathogenic agent, a mis-folded protein, known as a prion.
Despite the consumption of contaminated beef in the UK being reckoned to be quite high, vCJD has infected a comparatively small cohort of people. One explanation for this can be found in the genetics of patients with the disease. The human PRNP protein which is subverted in prion disease can occur with either methionine or valine at amino acid 129, without any apparent difference in normal function. Of the overall Caucasian population, about 40% have two methionine-containing alleles, 10% have two valine-containing alleles, and the other 50% are heterozygous at this position. Only a single vCJD patient tested was found to be heterozygous; most of those affected had two copies of the methionine-containing form. Additionally, for unknown reasons, those affected are generally under the age of 40. It is not yet known whether those unaffected are actually immune or only have a longer incubation period until symptoms appear.
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of progressive, invariably fatal, conditions that affect the brain (encephalopathies) and nervous system of many animals, including humans. According to the most widespread hypothesis, they are transmitted by prions, though some other data suggest an involvement of a "Spiroplasma" infection. Mental and physical abilities deteriorate and myriad tiny holes appear in the cortex causing it to appear like a sponge (hence spongiform) when brain tissue obtained at autopsy is examined under a microscope. The disorders cause impairment of brain function, including memory changes, personality changes and problems with movement that worsen chronically.
Prion diseases of humans include Creutzfeldt–Jakob disease—which has four main forms, the sporadic (sCJD), the hereditary/familiar (fCJD), the iatrogenic (iCJD) and the variant form (vCJD)—Gerstmann–Sträussler–Scheinker syndrome, fatal familial insomnia, kuru, and the recently discovered variably protease-sensitive prionopathy. These conditions form a spectrum of diseases with overlapping signs and symptoms. TSEs in non-human mammals include scrapie in sheep, bovine spongiform encephalopathy (BSE)—popularly known as 'mad cow's disease'—in cattle and chronic wasting disease (CWD) in deer and elk. The variant form of Creutzfeldt–Jakob disease is caused by exposure to bovine spongiform encephalopathy prions.
Unlike other kinds of infectious disease, which are spread by agents with a DNA or RNA genome (such as virus or bacteria), the infectious agent in TSEs is believed to be a prion, thus being composed solely of protein material. Misshapen prion proteins carry the disease between individuals and cause deterioration of the brain. TSEs are unique diseases in that their aetiology may be genetic, sporadic, or infectious via ingestion of infected foodstuffs and via iatrogenic means (e.g., blood transfusion). Most TSEs are sporadic and occur in an animal with no prion protein mutation. Inherited TSE occurs in animals carrying a rare mutant prion allele, which expresses prion proteins that contort by themselves into the disease-causing conformation. Transmission occurs when healthy animals consume tainted tissues from others with the disease. In the 1980s and 1990s, bovine spongiform encephalopathy (BSE) spread in cattle in an epidemic fashion. This occurred because cattle were fed the processed remains of other cattle, a practice now banned in many countries. In turn, consumption (by humans) of bovine-derived foodstuff which contained prion-contaminated tissues resulted in an outbreak of the variant form of Creutzfeldt–Jakob disease in the 1990s and 2000s.
Prions cannot be transmitted through the air or through touching or most other forms of casual contact. However, they may be transmitted through contact with infected tissue, body fluids, or contaminated medical instruments. Normal sterilization procedures such as boiling or irradiating materials fail to render prions non-infective.
There continues to be a very practical problem with diagnosis of prion diseases, including BSE and CJD. They have an incubation period of months to decades during which there are no symptoms, even though the pathway of converting the normal brain PrP protein into the toxic, disease-related PrP form has started. At present, there is virtually no way to detect PrP reliably except by examining the brain using neuropathological and immunohistochemical methods after death. Accumulation of the abnormally folded PrP form of the PrP protein is a characteristic of the disease, but it is present at very low levels in easily accessible body fluids like blood or urine. Researchers have tried to develop methods to measure PrP, but there are still no fully accepted methods for use in materials such as blood.
In 2010, a team from New York described detection of PrP even when initially present at only one part in a hundred billion (10) in brain tissue. The method combines amplification with a novel technology called Surround Optical Fiber Immunoassay (SOFIA) and some specific antibodies against PrP. After amplifying and then concentrating any PrP, the samples are labelled with a fluorescent dye using an antibody for specificity and then finally loaded into a micro-capillary tube. This tube is placed in a specially constructed apparatus so that it is totally surrounded by optical fibres to capture all light emitted once the dye is excited using a laser. The technique allowed detection of PrP after many fewer cycles of conversion than others have achieved, substantially reducing the possibility of artefacts, as well as speeding up the assay. The researchers also tested their method on blood samples from apparently healthy sheep that went on to develop scrapie. The animals’ brains were analysed once any symptoms became apparent. The researchers could therefore compare results from brain tissue and blood taken once the animals exhibited symptoms of the diseases, with blood obtained earlier in the animals’ lives, and from uninfected animals. The results showed very clearly that PrP could be detected in the blood of animals long before the symptoms appeared.
Recent research from the University of Toronto and Caprion Pharmaceuticals has discovered one possible avenue that might lead to quicker diagnosis, a vaccine or possibly even treatment for prion diseases. The abnormally folded proteins that cause the disease have been found to expose a side chain of amino acids that the properly folded protein does not expose. Antibodies specifically coded to this side-chain amino acid sequence have been found to stimulate an immune response to the abnormal prions and leave the normal proteins intact.
Another idea involves using custom peptide sequences. Since some research suggests prions aggregate by forming beta barrel structures, work done "in vitro" has shown that peptides made up of beta barrel-incompatible amino acids can help break up accumulations of prion.
A third idea concerns genetic therapy, whereby the gene for encoding protease-resistant protein is considered to be an error in several species, and therefore something to be inhibited.
Kuru is a very rare, incurable neurodegenerative disorder that was formerly common among the Fore people of Papua New Guinea. Kuru is caused by the transmission of abnormally folded prion proteins, which leads to symptoms such as tremors, loss of coordination, and neurodegeneration.
The term kuru derives from the Fore word kuria or guria ("to shake"), due to the body tremors that are a classic symptom of the disease and kúru itself means "trembling". It is also known as the "laughing sickness" due to the pathologic bursts of laughter which are a symptom of the disease. It is now widely accepted that kuru was transmitted among members of the Fore tribe of Papua New Guinea via funerary cannibalism. Deceased family members were traditionally cooked and eaten, which was thought to help free the spirit of the dead. Females and children usually consumed the brain, the organ in which infectious prions were most concentrated, thus allowing for transmission of kuru. The disease was therefore more prevalent among women and children.
While the Fore people stopped eating human meat in the early 1960's, when it was first speculated to be transmitted via endocannibalism, the disease lingered due to kuru’s long incubation period of anywhere from 10 to over 50 years. The epidemic declined sharply after discarding cannibalism, from 200 deaths per year in 1957 to 1 or no deaths annually in 2005, with sources disagreeing on whether the last known kuru victim died in 2005 or 2009.
In late 1983, Italian neurologist/sleep expert Dr. Ignazio Roiter received a patient at the University of Bologna hospital's sleep institute. The man, known only as Silvano, decided in a rare moment of consciousness to be recorded for future studies and to donate his brain for research in hopes of finding a cure for future victims. As of 2017, no cure or treatment has yet been found for FFI. Gene therapy has been thus far unsuccessful. While it is not currently possible to reverse the underlying illness, there is some evidence that treatments that focus solely upon the symptoms may improve quality of life.
It has been proven that sleeping pills and barbiturates are unhelpful; on the contrary, in 74% of cases, they have been shown to worsen the clinical manifestations and hasten the course of the disease.
One of the most notable cases is that of Michael (Michel A.) Corke, a music teacher from New Lenox, Illinois (born in Watseka, Illinois). He began to have trouble sleeping before his 40th birthday in 1991; following these first signs of insomnia, his health and state of mind quickly deteriorated as his condition worsened. Eventually, sleep became completely unattainable, and he was soon admitted to University of Chicago Hospital with a misdiagnosis of clinical depression due to multiple sclerosis. Medical professionals Dr. Raymond Roos and Dr. Anthony Reder, at first unsure of the nature of his illness, initially diagnosed multiple sclerosis; in a bid to provide temporary relief in the later stages of the disease, physicians attempted to induce a coma with the use of sedatives, to no avail as his brain still failed to shut down completely. Corke died in 1993, a month after his 42nd birthday, by which time he had been completely sleep-deprived for six months.
One person was able to exceed the average survival time by nearly one year with various strategies, including vitamin therapy and meditation, using different stimulants and hypnotics, and even complete sensory deprivation in an attempt to induce sleep at night and increase alertness during the day. He managed to write a book and drive hundreds of miles in this time but nonetheless, over the course of his trials, the person succumbed to the classic four-stage progression of the illness.
In the late 2000s, a mouse model was made for FFI. These mice expressed a humanized version of the PrP protein that also contains the D178N FFI mutation. These mice appear to have progressively fewer and shorter periods of uninterrupted sleep, damage in the thalamus, and early deaths, similar to humans with FFI.
As of 2016, studies are investigating whether doxycycline may be able to slow or even prevent the development of the disease.
Kuru is largely localized to the Fore people and people with whom they intermarried, and was transmitted through ritualistic cannibalism. The Fore people ritualistically cooked and consumed body parts of their family members following their death to symbolize respect and mourning. Because the brain is the organ enriched in the infectious agent prion, women and children, who consumed brain and viscera, had much higher likelihood of being infected than men, who preferentially consumed muscles.
Treatment varies according to the type and severity of the encephalopathy. Anticonvulsants may be prescribed to reduce or halt any seizures. Changes to diet and nutritional supplements may help some patients. In severe cases, dialysis or organ replacement surgery may be needed.
Sympathomimetic drugs can increase motivation, cognition, motor performance and alertness in patients with encephalopathy caused by brain injury, chronic infections, strokes, brain tumors.
Concerning more serious afflictions, the complex origins of myoclonus may be treated with multiple drugs, which have a limited effect individually, but greater when combined with others that act on different brain pathways or mechanisms. Treatment is most effective when the underlying cause is known, and can be treated as such. Some drugs being studied in different combinations include clonazepam, sodium valproate, piracetam, and primidone. Hormonal therapy may improve responses to antimyoclonic drugs in some people.
Some studies have shown that doses of 5-hydroxytryptophan (5-HTP) leads to improvement in patients with some types of action myoclonus and PME. These differences in the effect of 5-HTP on patients with myoclonus have not yet been explained.
Many of the drugs used for myoclonus, such as barbiturates, phenytoin and primidone, are also used to treat epilepsy. Barbiturates slow down the central nervous system and cause tranquilizing or antiseizure effects. Phenytoin and primidone are effective antiepileptics drugs, although phenytoin can cause liver failure or have other harmful long-term effects in patients with PME. Sodium valproate is an alternative therapy for myoclonus and can be used either alone or in combination with clonazepam. Some people have adverse reactions to clonazepam and/or sodium valproate.
When patients are taking multiple medications, the discontinuation of drugs suspected of causing myoclonus and treatment of metabolic derangements may resolve some cases of myoclonus. When pharmacological treatment is indicated anticonvulsants are the main line of treatment. Paradoxical reactions to treatment are notable. Drugs which most people respond to may in other individuals worsen their symptoms. Sometimes this leads to the mistake of increasing the dose, rather than decreasing or stopping the drug. Treatment of myoclonus focuses on medications that may help reduce symptoms. Drugs used include sodium valproate, clonazepam, the anticonvulsant levetiracetam, and piracetam. Dosages of clonazepam usually are increased gradually until the patient improves or side effects become harmful. Drowsiness and loss of coordination are common side effects. The beneficial effects of clonazepam may diminish over time if the patient develops a tolerance to the drug.
In forms of myoclonus where only a single area is affected, and even in a few other various forms, Botox injections (OnabotulinumtoxinA) may be helpful. The chemical messenger responsible for triggering the involuntary muscle contractions is blocked by the Botulinum toxins of the Botox.
Surgery is also a viable option for treatment if the symptoms are caused by a tumor or lesion in the brain or spinal cord. Surgery may also correct symptoms in those where myoclonus affects parts of the face or ear. While DBS is still being studied for use with myoclonus, Deep Brain Stimulation has also been tried in those with this and other movement disorders.
There is no known cure for neuromyotonia, but the condition is treatable. Anticonvulsants, including phenytoin and carbamazepine, usually provide significant relief from the stiffness, muscle spasms, and pain associated with neuromyotonia. Plasma exchange and IVIg treatment may provide short-term relief for patients with some forms of the acquired disorder. It is speculated that the plasma exchange causes an interference with the function of the voltage-dependent potassium channels, one of the underlying issues of hyper-excitability in autoimmune neuromyotonia. Botox injections also provide short-term relief. Immunosuppressants such as Prednisone may provide long term relief for patients with some forms of the acquired disorder.
There is no standard course of treatment for chorea. Treatment depends on the type of chorea and the associated disease. Although there are many drugs that can control it, no cure has yet been identified.
Treatment for LKS usually consists of medications, such as anticonvulsants and corticosteroids (such as prednisone), and speech therapy, which should be started early. Some patients improve with the use of corticosteroids or adrenocorticotropin hormone (ACTH) which lead researches to believe that inflammation and vasospasm may play a role in some cases of acquired epileptic aphasia.
A controversial treatment option involves a surgical technique called multiple subpial transection in which multiple incisions are made through the cortex of the affected part of the brain beneath the pia mater, severing the axonal tracts in the subjacent white matter. The cortex is sliced in parallel lines to the midtemporal gyrus and perisylvian area to attenuate the spread of the epileptiform activity without causing cortical dysfunction. There is a study by Morrell "et al." in which results were reported for 14 patients with acquired epileptic aphasia who underwent multiple subpial transections. Seven of the fourteen patients recovered age-appropriate speech and no longer required speech therapy. Another 4 of the 14 displayed improvement of speech and understanding instructions given verbally, but they still required speech therapy. Eleven patients had language dysfunction for two or more years. Another study by Sawhney "et al." reported improvement in all three of their patients with acquired epileptic aphasia who underwent the same procedure.
Various hospitals contain programs designed to treat conditions such as LKS like the Children's Hospital Boston and its Augmentative Communication Program. It is known internationally for its work with children or adults who are non-speaking or severely impaired. Typically, a care team for children with LKS consists of a neurologist, a neuropsychologist, and a speech pathologist or audiologist. Some children with behavioral problems may also need to see a child psychologist and a psychopharmacologist. Speech therapy begins immediately at the time of diagnosis along with medical treatment that may include steroids and anti-epileptic or anti-convulsant medications.
Patient education has also proved to be helpful in treating LKS. Teaching them sign language is a helpful means of communication and if the child was able to read and write before the onset of LKS, that is extremely helpful too.
In general, treatment for acquired partial lipodystrophy is limited to cosmetic, dietary, or medical options. Currently, no effective treatment exists to halt its progression.
Diet therapy has been shown to be of some value in the control of metabolic problems. The use of small, frequent feedings and partial substitution of medium-chain triglycerides for polyunsaturated fats appears to be beneficial.
Plastic surgery with implants of monolithic silicon rubber for correction of the deficient soft tissue of the face has been shown to be effective. False teeth may be useful in some cases for cosmetic reasons. Long-term treatment usually involves therapy for kidney and endocrine dysfunction.
Data on medications for APL are very limited. Thiazolidinediones have been used in the management of various types of lipodystrophies. They bind to peroxisome proliferator-activator receptor gamma (PPAR-gamma), which stimulates the transcription of genes responsible for growth and differentiation of adipocytes. A single report has suggested a beneficial effect from treatment with rosiglitazone on fat distribution in acquired partial lipodystrophy; however, preferential fat gain was in the lower body.
Direct drug therapy is administered according to the associated condition. Membranoproliferative glomerulonephritis and the presence of renal dysfunction largely determine the prognosis of acquired partial lipodystrophy. Standard guidelines for the management of renal disease should be followed. The course of membranoproliferative glomerulonephritis in acquired partial lipodystrophy has not been significantly altered by treatment with corticosteroids or cytotoxic medications. Recurrent bacterial infections, if severe, might be managed with prophylactic antibiotics.
Treatment for acquired noninflammatory myopathy is directed towards resolution of the underlying condition, pain management, and muscle rehabilitation.
Drug induced ANIMs can be reversed or improved by tapering off of the drugs and finding alternative care. Hyperthyroidism induced ANIM can be treated through anti-thyroid drugs, surgery and not eating foods high in Iodine such as kelp. Treatment of the hyperthyroidism results in complete recovery of the myopathy. ANIM caused by vitamin D deficiency can easily be resolved by taking vitamin supplements and increasing one's exposure to direct sunlight.
Pain can be managed through massaging affected areas and the use of nonsteroidal anti-inflammatory drugs (NSAIDs).
Exercise, physical therapy, and occupational therapy can be used to rehabilitate affected muscle areas and resist the atrophy process.
As with all myopathies, the use of walkers, canes, and braces can assist with the mobility of the afflicted individual.
Treating the underlying cause of the disorder may improve or reverse symptoms. However, in some cases, the encephalopathy may cause permanent structural changes and irreversible damage to the brain. These permanent deficits can be considered a form of stable dementia. Some encephalopathies can be fatal.
Available treatment falls into two modalities: treating infections and boosting the immune system.
Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised. In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administrated, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.
There are several treatments available for factor VII deficiency; they all replace deficient FVII.
1. Recombinant FVIIa concentrate (rFVIIa) is a recombinant treatment that is highly effective and has no risk of fluid overload or viral disease. It may be the optimal therapy.
2. Plasma derived Factor VII concentrate (pdFVII) : This treatment is suitable for surgery but can lead to thrombosis. It is virus attenuated.
3. Prothrombin complex concentrate (PCC) containing factor VII: this treatment is suitable for surgery, but has a risk of thrombosis. It is virus attenuated.
4. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
Some degree of control of the fasciculations may be achieved with the same medication used to treat essential tremor (beta-blockers and anti-seizure drugs). However, often the most effective approach to treatment is to treat any accompanying anxiety. No drugs, supplements, or other treatments have been found that completely control the symptoms. In cases where fasciculations are caused by magnesium deficiency, supplementing magnesium can be effective in reducing symptoms.
In many cases, the severity of BFS symptoms can be significantly reduced through a proactive approach to decrease the overall daily stress. Common ways to reduce stress include: exercising more, sleeping more, working less, meditation, and eliminating all forms of dietary caffeine (e.g. coffee, chocolate, cola, and certain over-the counter medications).
If pain or muscle aches are present alongside fasciculations, patients may be advised to take over-the-counter pain medications such as ibuprofen or acetaminophen during times of increased pain. Other forms of pain management may also be employed. Prior to taking any over-the-counter medications, individuals should initiate discussions with their health care provider(s) to avoid adverse effects associated with long-term usage or preexisting conditions.
As the causes of local gigantism are varied, treatment depends on the particular condition. Treatment may range from antibiotics and other medical therapy, to surgery in order to correct the anatomical anomaly.
Most cases are treated by application of topical antifungal creams to the skin, but in extensive or difficult to treat cases systemic treatment with oral medication may be required. The over-the-counter options include tolnaftate.
Among the available prescription drugs, the evidence is best for terbinafine and naftifine, but other agents may also work.
Topical antifungals are applied to the lesion twice a day for at least 3 weeks. The lesion usually resolves within 2 weeks, but therapy should be continued for another week to ensure the fungus is completely eradicated. If there are several ringworm lesions, the lesions are extensive, complications such as secondary infection exist, or the patient is immunocompromised, oral antifungal medications can be used. Oral medications are taken once a day for 7 days and result in higher clinical cure rates. The antifungal medications most commonly used are itraconazole and terbinafine.
The benefits of the use of topical steroids in addition to an antifungal is unclear. There might be a greater cure rate but no guidelines currently recommend its addition. The effect of Whitfield's ointment is also unclear.
Usually initial therapy is empirical. If sufficient reason to suspect influenza, one might consider oseltamivir. In case of legionellosis, erythromycin or fluoroquinolone.
A third generation cephalosporin (ceftazidime) + carbapenems (imipenem) + beta lactam & beta lactamase inhibitors (piperacillin/tazobactam)
Research on myoclonus is supported through the National Institute of Neurological Disorders and Stroke (NINDS). The primary focus of research is on the role of neurotransmitters and receptors involved in the disease. Identifying whether or not abnormalities in these pathways cause myoclonus may help in efforts to develop drug treatments and diagnostic tests. Determining the extent that genetics play in these abnormalities may lead to potential treatments for their reversal, potentially correcting the loss of inhibition while enhancing mechanisms in the body that would compensate for their effects.