Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Due to the high mortality of untreated TTP, a presumptive diagnosis of TTP is made even when only microangiopathic hemolytic anemia and thrombocytopenia are seen, and therapy is started. Transfusion is contraindicated in thrombotic TTP, as it fuels the coagulopathy. Since the early 1990s, plasmapheresis has become the treatment of choice for TTP. This is an exchange transfusion involving removal of the patient's blood plasma through apheresis and replacement with donor plasma (fresh frozen plasma or cryosupernatant); the procedure must be repeated daily to eliminate the inhibitor and abate the symptoms. If apheresis is not available, fresh frozen plasma can be infused, but the volume that can be given safely is limited due to the danger of fluid overload. Plasma infusion alone is not as beneficial as plasma exchange. Corticosteroids (prednisone or prednisolone) are usually given. Rituximab, a monoclonal antibody aimed at the CD20 molecule on B lymphocytes, may be used on diagnosis; this is thought to kill the B cells and thereby reduce the production of the inhibitor. A stronger recommendation for rituximab exists where TTP does not respond to corticosteroids and plasmapheresis.
Caplacizumab is an alternative option in treating TTP as it has been shown that it induces a faster disease resolution compared with those patient who were on placebo. However, the use of caplacizumab was associated with increase bleeding tendencies in the studied subjects.
Most patients with refractory or relapsing TTP receive additional immunosuppressive therapy, e.g. vincristine, cyclophosphamide, splenectomy or a combination of the above.
Children with Upshaw-Schülman syndrome receive prophylactic plasma every two to three weeks; this maintains adequate levels of functioning ADAMTS13. Some tolerate longer intervals between plasma infusions. Additional plasma infusions may necessary for triggering events, such as surgery; alternatively, the platelet count may be monitored closely around these events with plasma being administered if the count drops.
Measurements of blood levels of lactate dehydrogenase, platelets, and schistocytes are used to monitor disease progression or remission. ADAMTS13 activity and inhibitor levels may be measured during follow-up, but in those without symptoms the use of rituximab is not recommended.
The course of treatment and the success rate is dependent on the type of TMA. Some patients with atypical HUS and TTP have responded to plasma infusions or exchanges, a procedure which replaces proteins necessary for the complement cascade that the patient does not have; however, this is not a permanent solution or treatment, especially for patients with congenital predispositions.
The mortality rate is around 95% for untreated cases, but the prognosis is reasonably favorable (80–90% survival) for patients with idiopathic TTP diagnosed and treated early with plasmapheresis.
Before the introduction of eculizumab (INN and USAN, trade name Soliris), a monoclonal antibody that is a first-in-class terminal complement inhibitor, management options for patients with aHUS were extremely limited. Guidelines issued by the European Paediatric Study Group for HUS recommend rapid administration of plasma exchange or plasma infusion (PE/PI), intensively administered daily for 5 days and then with reducing frequency. However, the American Society for Apheresis offers a "weak" recommendation for plasma exchange to treat aHUS, due to the "low" or "very low" quality of evidence supporting its use. Although some patients experienced improvements in red blood cell and platelet counts, plasma therapies generally did not result in full remission.
Although plasma exchange/infusion (PE/PI) is frequently used, there are no controlled trials of its safety or efficacy in aHUS. Even though PE/PI often partially controls some of the hematological manifestations of aHUS in some patients, its effectiveness has not been demonstrated in terms of inducing total disease remission. PE/PI is associated with significant safety risks, including risk of infection, allergic reactions, thrombosis, loss of vascular access, and poor quality of life. Importantly, terminal complement activation has been shown to be chronically present on the surface of platelets in patients with aHUS who appear to be clinically well while receiving chronic PE/PI.
The therapy of an acute TTP episode has to be started as early as possible. The standard treatment is the daily replacement of the missing ADAMTS13 protease in form of plasma infusions or in more severe episodes by plasma exchange. In the latter the patients plasma is replaced by donated plasma. The most common sources of ADAMTS13 is platelet-poor fresh frozen plasma (FFP) or solvent-detergent plasma.
The benefit of plasma exchange compared to plasma infusions alone may result from the additional removal of ULVWF. In general both plasma therapies are well tolerated, several mostly minor complications may be observed. The number of infusion/exchange sessions needed to overcome a TTP episode are variable but usually take less than a week in USS. The intensive plasma-therapy is generally stopped when platelet count increases to normal levels and is stable over several days.
For patients with vWD type 1 and vWD type 2A, desmopressin is available as different preparations, recommended for use in cases of minor trauma, or in preparation for dental or minor surgical procedures. Desmopressin stimulates the release of vWF from the Weibel-Palade bodies of endothelial cells, thereby increasing the levels of vWF (as well as coagulant factor VIII) three- to five-fold. Desmopressin is also available as a preparation for intranasal administration (Stimate) and as a preparation for intravenous administration. Recently, the FDA has approved the use of Baxalta’s Vonvendi. This is the first recombinant form of vWF. The effectiveness of this treatment is different than desmopressin because it only contains vWF, not vWF with the addition of FVIII. This treatment is only recommended for use by individuals who are 18 years of age or older.
Desmopressin is contraindicated in vWD type 2b because of the risk of aggravated thrombocytopenia and thrombotic complications. Desmopressin is probably not effective in vWD type 2M and is rarely effective in vWD type 2N. It is totally ineffective in vWD type 3.
For women with heavy menstrual bleeding, estrogen-containing oral contraceptive medications are effective in reducing the frequency and duration of the menstrual periods. Estrogen and progesterone compounds available for use in the correction of menorrhagia are ethinylestradiol and levonorgestrel (Levona, Nordette, Lutera, Trivora). Administration of ethinylestradiol diminishes the secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary, leading to stabilization of the endometrial surface of the uterus.
Desmopressin is a synthetic analog of the natural antidiuretic hormone vasopressin. Its overuse can lead to water retention and dilutional hyponatremia with consequent convulsion.
For patients with vWD scheduled for surgery and cases of vWD disease complicated by clinically significant hemorrhage, human-derived medium purity factor VIII concentrates, which also contain von Willebrand factors, are available for prophylaxis and treatment. Humate P, Alphanate, Wilate and Koate HP are commercially available for prophylaxis and treatment of vWD. Monoclonally purified factor VIII concentrates and recombinant factor VIII concentrates contain insignificant quantity of vWF, so are not clinically useful.
Development of alloantibodies occurs in 10-15% of patients receiving human-derived medium-purity factor VIII concentrates and the risk of allergic reactions including anaphylaxis must be considered when administering these preparations. Administration of the latter is also associated with increased risk of venous thromboembolic complications.
Blood transfusions are given as needed to correct anemia and hypotension secondary to hypovolemia. Infusion of platelet concentrates is recommended for correction of hemorrhage associated with platelet-type vWD.
The antifibrinolytic agents epsilon amino caproic acid and tranexamic acid are useful adjuncts in the management of vWD complicated by clinical hemorrhage. The use topical thrombin JMI and topical Tisseel VH are effective adjuncts for correction of hemorrhage from wounds.
Not all affected patients seem to need a regular preventive plasma infusion therapy, especially as some reach longterm remission without it. Regular plasma infusions are necessary in patients with frequent relapses and in general situations with increased risk to develop an acute episode (as seen above) such as pregnancy. Plasma infusions are given usually every two to three weeks to prevent acute episodes of USS but are often individually adapted.
The effect of antibiotics in "E. coli" O157:H7 colitis is controversial. Certain antibiotics may stimulate further verotoxin production and thereby increase the risk of HUS. However, there is also tentative evidence that some antibiotics like quinolones may decrease the risk of hemolytic uremic syndrome. In the 1990s a group of pediatricians from the University of Washington used a network of 47 cooperating laboratories in Washington, Oregon, Idaho, and Wyoming to prospectively identify 73 children younger than 10 years of age who had diarrhea caused by "E. coli" O157:H7 The hemolytic–uremic syndrome developed in 5 of the 9 children given antibiotics (56 percent), and in 5 of the 62 children who were not given antibiotics (8 percent, P<0.001).
Treatment of HUS is generally supportive, with dialysis as needed. Platelet transfusion may actually worsen the outcome.
In most children with postdiarrheal HUS, there is a good chance of spontaneous resolution, so observation in a hospital is often all that is necessary, with supportive care such as hemodialysis where indicated. If a diagnosis of STEC-HUS is confirmed, plasmapheresis (plasma exchange) is contraindicated. However, plasmapheresis may be indicated when there is diagnostic uncertainty between HUS and TTP.
There are case reports of experimental treatments with eculizumab, a monoclonal antibody against CD5 that blocks part of the complement system, being used to treat congenital atypical hemolytic uremic syndrome, as well as severe shiga-toxin associated hemolytic uremic syndrome. These have shown promising results. Eculizeumab was approved by the U.S. Food and Drug Administration (FDA) on March 13, 2007 for the treatment of paroxysmal nocturnal hemoglobinuria (PNH), a rare, progressive, and sometimes life-threatening disease characterized by excessive hemolysis; and on September 23, 2011 for the treatment of atypical hemolytic uremic syndrome (aHUS) It was approved by the European Medicines Agency for the treatment of PNH on June 20, 2007, and on November 29, 2011 for the treatment of aHUS. However, of note is the exceedingly high cost of treatment, with one year of the drug costing over $500,000.
Scientists are trying to understand how useful it would be to immunize humans or cattles with vaccines.
The first element of treatment is usually to discontinue the offending drug, although there have been reports describing how the eruption evolved little after it had established in spite of continuing the medication. Vitamin K1 can be used to reverse the effects of warfarin, and heparin or its low molecular weight heparin (LMWH) can be used in an attempt to prevent further clotting. None of these suggested therapies have been studied in clinical trials.
Heparin and LMWH act by a different mechanism than warfarin, so these drugs can also be used to prevent clotting during the first few days of warfarin therapy and thus prevent warfarin necrosis (this is called 'bridging').
Based on the assumption that low levels of protein C are involved in the underlying mechanism, common treatments in this setting include fresh frozen plasma or pure activated protein C.
Since the clot-promoting effects of starting administration of 4-hydroxycoumarins are transitory, patients with protein C deficiency or previous warfarin necrosis can still be restarted on these drugs if appropriate measures are taken. These include gradual increase starting from low doses and supplemental administration of protein C (pure or from fresh frozen plasma).
The necrotic skin areas are treated as in other conditions, sometimes healing spontaneously with or without scarring, sometimes going on to require surgical debridement or skin grafting.
Platelet storage pool deficiency has no treatment however management consists of antifibrinolytic medications if the individual has unusual bleeding event, additionally caution should be taken with usage of NSAIDS
There are several treatments available for factor VII deficiency; they all replace deficient FVII.
1. Recombinant FVIIa concentrate (rFVIIa) is a recombinant treatment that is highly effective and has no risk of fluid overload or viral disease. It may be the optimal therapy.
2. Plasma derived Factor VII concentrate (pdFVII) : This treatment is suitable for surgery but can lead to thrombosis. It is virus attenuated.
3. Prothrombin complex concentrate (PCC) containing factor VII: this treatment is suitable for surgery, but has a risk of thrombosis. It is virus attenuated.
4. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
In congenital FXII deficiency treatment is not necessary. In acquired FXII deficiency the underlying problem needs to be addressed.
There is no specific treatment for thrombophilia, unless it is caused by an underlying medical illness (such as nephrotic syndrome), where the treatment of the underlying disease is needed. In those with unprovoked and/or recurrent thrombosis, or those with a high-risk form of thrombophilia, the most important decision is whether to use anticoagulation medications, such as warfarin, on a long-term basis to reduce the risk of further episodes. This risk needs to weighed against the risk that the treatment will cause significant bleeding, as the reported risk of major bleeding is over 3% per year, and 11% of those with major bleeding may die as a result.
Apart from the abovementioned forms of thrombophilia, the risk of recurrence after an episode of thrombosis is determined by factors such as the extent and severity of the original thrombosis, whether it was provoked (such as by immobilization or pregnancy), the number of previous thrombotic events, male sex, the presence of an inferior vena cava filter, the presence of cancer, symptoms of post-thrombotic syndrome, and obesity. These factors tend to be more important in the decision than the presence or absence of a detectable thrombophilia.
Those with antiphospholipid syndrome may be offered long-term anticoagulation after a first unprovoked episode of thrombosis. The risk is determined by the subtype of antibody detected, by the antibody titer (amount of antibodies), whether multiple antibodies are detected, and whether it is detected repeatedly or only on a single occasion.
Women with a thrombophilia who are contemplating pregnancy or are pregnant usually require alternatives to warfarin during pregnancy, especially in the first 13 weeks, when it may produce abnormalities in the unborn child. Low molecular weight heparin (LMWH, such as enoxaparin) is generally used as an alternative. Warfarin and LMWH may safely be used in breastfeeding.
When women experience recurrent pregnancy loss secondary to thrombophilia, some studies have suggested that low molecular weight heparin reduces the risk of miscarriage. When the results of all studies are analysed together, no statistically signifiant benefit could be demonstrated.
Treatment is almost always aimed to control hemorrhages, treating underlying causes, and taking preventative steps before performing invasive surgeries.
Hypoprothrombinemia can be treated with periodic infusions of purified prothrombin complexes. These are typically used as treatment methods for severe bleeding cases in order to boost clotting ability and increasing levels of vitamin K-dependent coagulation factors.
1. A known treatment for hypoprothrombinemia is menadoxime.
2. Menatetrenone was also listed as a Antihaemorrhagic vitamin.
3. 4-Amino-2-methyl-1-naphthol (Vitamin K5) is another treatment for hypoprothrombinemia.
1. Vitamin K forms are administered orally or intravenously.
4. Other concentrates include Proplex T, Konyne 80, and Bebulin VH.
Fresh Frozen Plasma infusion (FFP) is a method used for continuous bleeding episodes, every 3-5 weeks for mention.
1. Used to treat various conditions related to low blood clotting factors.
2. Administered by intravenous injection and typically at a 15-20 ml/kg/dose.
3. Can be used to treat acute bleeding.
Sometimes, underlying causes cannot be controlled or determined, so management of symptoms and bleeding conditions should be priority in treatment.
Invasive options, such as surgery or clotting factor infusions, are required if previous methods do not suffice. Surgery is to be avoided, as it causes significant bleeding in patients with hypoprothrombinemia.
Prognosis for patients varies and is dependent on severity of the condition and how early the treatment is managed.
1. With proper treatment and care, most people go on to live a normal and healthy life.
2. With more severe cases, a hematologist will need to be seen throughout the patient's life in order to deal with bleeding and continued risks.
Following are some complications of coagulopathies, some of them caused by their treatments:
In terms of management for complement deficiency, immunosuppressive therapy should be used depending on the disease presented. A C1-INH concentrate can be used for angio-oedema (C1-INH deficiency).
Pneumococcus and haemophilus infections prevention can be taken via immunization for those with complement deficiency. Epsilon-aminocaproic acid could be used to treat hereditary C1-INH deficiency, though the possible side effect of intravascular thrombosis should be weighed.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
In general, treatment for acquired partial lipodystrophy is limited to cosmetic, dietary, or medical options. Currently, no effective treatment exists to halt its progression.
Diet therapy has been shown to be of some value in the control of metabolic problems. The use of small, frequent feedings and partial substitution of medium-chain triglycerides for polyunsaturated fats appears to be beneficial.
Plastic surgery with implants of monolithic silicon rubber for correction of the deficient soft tissue of the face has been shown to be effective. False teeth may be useful in some cases for cosmetic reasons. Long-term treatment usually involves therapy for kidney and endocrine dysfunction.
Data on medications for APL are very limited. Thiazolidinediones have been used in the management of various types of lipodystrophies. They bind to peroxisome proliferator-activator receptor gamma (PPAR-gamma), which stimulates the transcription of genes responsible for growth and differentiation of adipocytes. A single report has suggested a beneficial effect from treatment with rosiglitazone on fat distribution in acquired partial lipodystrophy; however, preferential fat gain was in the lower body.
Direct drug therapy is administered according to the associated condition. Membranoproliferative glomerulonephritis and the presence of renal dysfunction largely determine the prognosis of acquired partial lipodystrophy. Standard guidelines for the management of renal disease should be followed. The course of membranoproliferative glomerulonephritis in acquired partial lipodystrophy has not been significantly altered by treatment with corticosteroids or cytotoxic medications. Recurrent bacterial infections, if severe, might be managed with prophylactic antibiotics.
Available treatment falls into two modalities: treating infections and boosting the immune system.
Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised. In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administrated, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.
Thrombotic microangiopathy (TMA) is a pathology that results in thrombosis in capillaries and arterioles, due to an endothelial injury. It may be seen in association with thrombocytopenia, anemia, purpura and renal failure.
The classic TMAs are hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Other conditions with TMA include atypical hemolytic uremic syndrome, disseminated intravascular coagulation, scleroderma renal crisis, malignant hypertension,
antiphospholipid antibody syndrome, and drug toxicities, e.g. calcineurin inhibitor toxicity.
In hereditary angioedema, specific stimuli that have previously led to attacks may need to be avoided in the future. It does not respond to antihistamines, corticosteroids, or epinephrine. Acute treatment consists of C1-INH (C1-esterase inhibitor) concentrate from donor blood, which must be administered intravenously. In an emergency, fresh frozen blood plasma, which also contains C1-INH, can also be used. However, in most European countries, C1-INH concentrate is only available to patients who are participating in special programmes. The medications ecallantide and icatibant may be used to treat attacks. In 2017 these medications cost between 5,700 and 14,000 per dose in the United States, prices that tripled in two years.
Future attacks of hereditary angioedema can be prevented by the use of androgens such as danazol, oxandrolone or methyltestosterone. These agents increase the level of aminopeptidase P, an enzyme that inactivates kinins; kinins (especially bradykinin) are responsible for the manifestations of angioedema.
ACE inhibitors can induce angioedema. ACE inhibitors block the enzyme ACE so it can no longer degrade bradykinin; thus, bradykinin accumulates and causes angioedema. This complication appears more common in African-Americans. In people with ACE inhibitor angioedema, the drug needs to be discontinued and an alternative treatment needs to be found, such as an angiotensin II receptor blocker (ARB) which has a similar mechanism but does not affect bradykinin. However, this is controversial, as small studies have shown some patients with ACE inhibitor angioedema can develop it with ARBs, as well.
In medicine (hematology), bleeding diathesis (h(a)emorrhagic diathesis) is an unusual susceptibility to bleed (hemorrhage) mostly due to hypocoagulability, in turn caused by a coagulopathy (a defect in the system of coagulation). Several types are distinguished, ranging from mild to lethal. Also, bleeding diathesis can be caused by thinning of the skin or impaired wound healing.