Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Aside from surgery, there are a few options for handling an accessory navicular bone that has become symptomatic. This includes immobilization, icing, medicating, physical therapy, and orthotic devices. Immobilizing involves placing the foot and ankle in a cast or removable walking boot. This alleviates stressors on the foot and can decrease inflammation. Icing will help reduce swelling and inflammation. Medication involves usage of nonsteroidal anti-inflammatory drugs, or steroids (taken orally or injected) to decrease inflammation. Physical therapy can be prescribed in order to strengthen the muscles and help decrease inflammation. Physical therapy can also help prevent the symptoms from returning. Orthotic devices (arch support devices that fit in a shoe) can help prevent future symptoms. Occasionally, the orthotic device will dig into the edge of the accessory navicular and cause discomfort. For this reason, the orthotic devices made for the patient should be carefully constructed.
Vasodilators improve the blood flow into the vessels of the hoof. Examples include isoxsuprine (currently unavailable in the UK) and pentoxifylline.
Anticoagulants can also improve blood flow. The use of warfarin has been proposed, but the extensive monitoring required makes it unsuitable in most cases.
Anti-inflammatory drugs are used to treat the pain, and can help the lameness resolve sometimes if shoeing and training changes are made. Include Nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and other joint medications. The use of intramuscular glycosaminoglycans has been shown to decrease pain in horses with navicular disease, but this effect wanes after discontinuation of therapy. Oral glycosaminoglycans may have a similar effect.
Bisphosphonates can be useful in cases where bone remodeling is causing pain.
Gallium nitrate (GaN) has been hypothesized as a possible treatment for navicular disease, but its benefits have not been confirmed by formal clinical studies. One pilot study examined horses given gallium nitrate in their feed rations. While it was absorbed slowly, it did stay in the animals' system, providing a baseline dosage for future studies.
The goal of non-surgical treatment of tarsal coalition is to relieve the symptoms by reducing the movement of the affected joint. This might include non-steroidal anti-inflammatory drugs (NSAIDs), steroidal anti-inflammatory injection, stabilizing orthotics or immobilization via a leg cast. At times, short term immobilization followed by long term orthotic use may be sufficient to keep the area free of pain.
Surgery is very commonly required. The type and complexity of the surgery will depend on the location of the coalition. Essentially, there are two types of surgery. Wherever possible, the bar will be removed to restore normal motion between the two bones. If this is not possible, it may be necessary to fuse the affected joints together by using screws to connect them solidly. Cutting away the coalition is more likely to succeed the younger the patient. With age comes extra wear in the affected and adjacent joints that makes treatment more difficult.
With prompt treatment, particularly open reduction, and early mobilisation the outcome is generally good. High energy injuries and associated fractures worsen the outcome.
No single treatment works for all cases, probably because there is no single cause for all cases. The degenerative changes are usually quite advanced by the time the horse is consistently lame, and these changes are believed to be non-reversible. At this time, it is best to manage the condition and focus on alleviating pain and slowing the degeneration.
The choice of surgical versus non-surgical treatments for osteochondritis dissecans is controversial. Consequently, the type and extent of surgery necessary varies based on patient age, severity of the lesion, and personal bias of the treating surgeon—entailing an exhaustive list of suggested treatments. A variety of surgical options exist for the treatment of persistently symptomatic, intact, partially detached, and completely detached OCD lesions. Post-surgery reparative cartilage is inferior to healthy hyaline cartilage in glycosaminoglycan concentration, histological, and immunohistochemical appearance. As a result, surgery is often avoided if non-operative treatment is viable.
If non-surgical measures are unsuccessful, drilling may be considered to stimulate healing of the subchondral bone. Arthroscopic drilling may be performed by using an antegrade (from the front) approach from the joint space through the articular cartilage, or by using a retrograde (from behind) approach through the bone outside of the joint to avoid penetration of the articular cartilage. This has proven successful with positive results at one-year follow-up with antegrade drilling in nine out of eleven teenagers with the juvenile form of OCD, and in 18 of 20 skeletally immature people (follow-up of five years) who had failed prior conservative programs.
Since there is a variety of classifications of winged scapula, there is also more than one type of treatment. Massage Therapy is an effective initial approach to relax the damaged muscles. In more severe cases, Physical Therapy can help by strengthening affected and surrounding muscles. Physical therapy constitutes treatment options if there is weakness of the glenohumeral joint muscles, but if the muscles do not contract clinically and symptoms continue to be severe for more than 3–6 months, surgery may be the next choice. Surgery by fixation of the scapula to the rib cage can be done for those with isolated scapular winging. Some options are neurolysis (chordotomy), intercostal nerve transfer, scapulothoracic fusion, arthrodesis (scapulodesis), or scapulothoracis fixation without arthrodesis (scapulopexy).
Options include operative or non-operative treatment. If the dislocation is less than 2 mm, the fracture can be managed with casting for six weeks. The patient's injured limb cannot bear weight during this period. For severe Lisfranc injuries, open reduction with internal fixation (ORIF) and temporary screw or Kirschner wire (K-wire) fixation is the treatment of choice. The foot cannot be allowed to bear weight for a minimum of six weeks. Partial weight-bearing may then begin, with full weight bearing after an additional several weeks, depending on the specific injury. K-wires are typically removed after six weeks, before weight bearing, while screws are often removed after 12 weeks.
When a Lisfranc injury is characterized by significant displacement of the tarsometatarsal joint(s), nonoperative treatment often leads to severe loss of function and long-term disability secondary to chronic pain and sometimes to a planovalgus deformity. In cases with severe pain, loss of function, or progressive deformity that has failed to respond to nonoperative treatment, mid-tarsal and tarsometatarsal arthrodesis (operative fusion of the bones) may be indicated.
Treatment usually involves resting the affected foot, taking pain relievers and trying to avoid putting pressure on the foot. In acute cases, the patient is often fitted with a cast that stops below the knee. The cast is usually worn for 6 to 8 weeks. After the cast is taken off, some patients are prescribed arch support for about 6 months. Also, moderate exercise is often beneficial, and physical therapy may help as well.
Prognosis for children with this disease is very good. It may persist for some time, but most cases are resolved within two years of the initial diagnosis. Although in most cases no permanent damage is done, some will have lasting damage to the foot. Also, later in life, Kohler's disease can spread to the hips.
Type II should be managed conservatively whereas type I and Ia requires to be treated surgically. Surgery involves four major steps:
- Development of the calcaneal part of the foot
- Repositioning of the navicular bone
- New adjustment of the ankle, and
- Various stabilization measures including the Grice operation and transposition of various tendons.
For low-risk stress fractures, rest is the best management option. The amount of recovery time varies greatly depending upon the location and severity of the fracture, and the body's healing response. Complete rest and a stirrup leg brace or walking boot are usually used for a period of four to eight weeks, although periods of rest of twelve weeks or more are not uncommon for more severe stress fractures. After this period, activities may be gradually resumed as long as the activities do not cause pain. While the bone may feel healed and not hurt during daily activity, the process of bone remodeling may take place for many months after the injury feels healed. Incidences of refracturing the bone are still a significant risk. Activities such as running or sports that place additional stress on the bone should only gradually be resumed. Rehabilitation usually includes muscle strength training to help dissipate the forces transmitted to the bones.
With severe stress fractures (see "prognosis"), surgery may be needed for proper healing. The procedure may involve pinning the fracture site, and rehabilitation can take up to six months.
Diagnosis is made on plain radiograph of the foot, although the extent of injury is often underestimated.
Treatment comprises early reduction of the dislocation, and frequently involves open reduction internal fixation to restore and stabilise the talonavicular joint. Open reduction and fusion of the calcaneocuboid joint is occasionally required.
Appropriate treatment for lameness depends on the condition diagnosed, but at a minimum it usually includes rest or decreased activity and anti-inflammatory medications. Other treatment options, such as corrective shoeing, joint injections, and regenerative therapies, are pursued based on the cause of lameness and the financial limits of the owner. Consultation with a veterinarian is generally recommended, even for mild cases, as some types of lameness may worsen if not properly diagnosed and treated.
Altering the biomechanics of training and training schedules may reduce the prevalence of stress fractures. Orthotic insoles have been found to decrease the rate of stress fractures in military recruits, but it is unclear whether this can be extrapolated to the general population or athletes. On the other hand, some athletes have argued that cushioning in shoes actually causes more stress by reducing the body's natural shock-absorbing action, thus increasing the frequency of running injuries. During exercise that applies more stress to the bones, it may help to increase daily calcium (2,000mg) and vitamin D (800 IU) intake, depending on the individual.
UCL injuries may or may not require surgery. Non surgical treatment will primarily focus on strengthening the elbow joint to regain strength and stability. First a course of
RICE (Rest, ice, compression, elevation) is typically coupled with NSAIDS (Non-steroidal anti-inflammatory drugs) to help alleviate pain and swelling. When the swelling has subsided, individual exercises or physical therapy may be prescribed to strengthen muscles around the elbow joint to compensate for tearing in the UCL. These may include biceps curls (non resistance and resistance), pronating and supinating the forearm, and grip strengthening exercises, performed with low resistance and moderate repetitions no more than three times a week.
Surgical treatment may help restore the ability to perform the overhand throwing motions most commonly associated with UCL injuries. The reconstructive surgery, generally known as Tommy John surgery, was first performed by Dr. Frank Jobe in 1974 and has modified several times over the past 30 years. The surgery involves an autograft of the palmaris longus tendon (mostly seen as an accessory tendon) or an allograft of tissue from a cadaver or donor. The new tendon is attached by drilling holes in the medial epicondyle of the humerus and the sublime tubercle of the ulna and lacing the tendon through them in a figure eight. The patient may begin physical therapy shortly after. It usually takes about 15 months after the surgery for standard rehabilitation. In study conducted by Dr. Frederick Azar, 78 Tommy John surgeries were performed and analyzed after the surgeries. Of the 78 patients, 8 of them (8.8%) reported complications. Two patients had superficial infections that resolved with oral antibiotics, two patients reported tightness of tenderness at the surgery site, and one had a superficial wound infection at the elbow incision that resolved with oral antibiotics. One patient developed postoperative ulnar nerve damage. Two patients had damages to the posteromedial part of the olecranon and required to have reoperation.
Recent studies have shown that MLB pitchers who undergo Tommy John surgery return to pitch in the MLB 83% of the time and only 3% fail to return to pitch in the MLB or the minor league.
Recently, there has been a recorded increase of Tommy John surgery. The increase is related to the false perception that the surgery improves the stability of the UCL joint. Many athletes believe in this false perception and cause them to lie about their symptoms in hopes to undergo the surgery. In order to combat these rumors, physicians are motivated to educate the public that Tommy John surgeries are only for those who have severe UCL injuries. The surgery will have an insignificant effect if the patient does not have a severe UCL injury.
The tendon chosen is then woven in a figure eight pattern through the humerus and ulna, which holes were first drilled in the bones. After surgery occurs, rehabilitation comes into place and usually takes about a year because a tendon needs time to convert into a ligament.
Most flexible flat feet are asymptomatic, and do not cause pain. In these cases, there is usually no cause for concern. Flat feet were formerly a physical-health reason for service-rejection in many militaries. However, three military studies on asymptomatic adults (see section below), suggest that persons with asymptomatic flat feet are at least as tolerant of foot stress as the population with various grades of arch. Asymptomatic flat feet are no longer a service disqualification in the U.S. military.
In a study performed to analyze the activation of the tibialis posterior muscle in adults with pes planus, it was noted that the tendon of this muscle may be dysfunctional and lead to disabling weightbearing symptoms associated with acquired flat foot deformity. The results of the study indicated that while barefoot, subjects activated additional lower-leg muscles to complete an exercise that resisted foot adduction. However, when the same subjects performed the exercise while wearing arch supporting orthotics and shoes, the tibialis posterior was selectively activated. Such discoveries suggest that the use of shoes with properly fitting, arch-supporting orthics will enhance selective activation of the tibialis posterior muscle thus, acting as an adequate treatment for the undesirable symptoms of pes planus.
Rigid flatfoot, a condition where the sole of the foot is rigidly flat even when a person is not standing, often indicates a significant problem in the bones of the affected feet, and can cause pain in about a quarter of those affected. Other flatfoot-related conditions, such as various forms of tarsal coalition (two or more bones in the midfoot or hindfoot abnormally joined) or an accessory navicular (extra bone on the inner side of the foot) should be treated promptly, usually by the very early teen years, before a child's bone structure firms up permanently as a young adult. Both tarsal coalition and an accessory navicular can be confirmed by X-ray. Rheumatoid arthritis can destroy tendons in the foot (or both feet) which can cause this condition, and untreated can result in deformity and early onset of osteoarthritis of the joint. Such a condition can cause severe pain and considerably reduced ability to walk, even with orthoses. Ankle fusion is usually recommended.
Treatment of flat feet may also be appropriate if there is associated foot or lower leg pain, or if the condition affects the knees or the lower back. Treatment may include using orthoses such as an arch support, foot gymnastics or other exercises as recommended by a podiatrist/orthotist or physical therapist. In cases of severe flat feet, orthoses should be used through a gradual process to lessen discomfort. Over several weeks, slightly more material is added to the orthosis to raise the arch. These small changes allow the foot structure to adjust gradually, as well as giving the patient time to acclimatise to the sensation of wearing orthoses. Once prescribed, orthoses are generally worn for the rest of the patient's life. In some cases, surgery can provide lasting relief, and even create an arch where none existed before; it should be considered a last resort, as it is usually very time consuming and costly.
The ulnar collateral ligament is an important stabilizer of the thumb. Thumb instability resulting from disruption of the UCL profoundly impairs the overall function of the involved hand. Because of this, it is critical that these injuries receive appropriate attention and treatment.
Most gamekeeper's thumb injuries are treated by simply immobilizing the joint in a thumb spica splint or a modified wrist splint and allowing the ligament to heal. However, near total or total tears of the UCL may require surgery to achieve a satisfactory repair, especially if accompanied by a Stener lesion.
In a case of an adolescent with rear foot pain, the physical exam will reveal that the foot movement is limited. This is both because there is a physical blockade to movement and because the brain will 'turn on' the muscles around the area to stop the joint moving toward the painful 'zone'. X-rays will usually be ordered and, in general, if there is enough toughness to the tissue bridge that pain has begun – there will usually be enough bone laid down to show up in an x-ray.
More high-tech investigations such as CT scan will be required if proceeding to surgery. If the bridge appears to be mostly fibrous tissue, an MRI would be the preferred modality to use.
An accessory navicular bone is an accessory bone of the foot that occasionally develops abnormally in front of the ankle towards the inside of the foot. This bone may be present in approximately 2-21% of the general population and is usually asymptomatic. When it is symptomatic, surgery may be necessary.
Surgery can be performed at any age because it does not alter any other bones.
Symptoms of an accessory navicular bone may include plantar fasciitis, bunions and heel spurs.
Because neither of the two thumb components is normal, a decision should be taken on combining which elements to create the best possible composite digit. Instead of amputating the most hypoplastic thumb, preservation of skin, nail, collateral ligaments and tendons is needed to augment the residual thumb. Surgery is recommended in the first year of life, generally between 9 and 15 months of age.
Surgical options depend on type of polydactyly.
This type of procedure is recommended for Wassel types 1 and 2 (in which both thumbs are severely hypoplastic) by some congenital hand surgeons. The technique contains a composite wedge resection of the central bone and soft-tissue. This will be achieved with approach of the lateral tissue of each thumb. The goal is to achieve a normal thumb, what concerns the size, which is possible. If the width of the nail bed is greater than 70% of the contralateral thumb, it may be split. Then the nail bed will be repaired precisely.
Throughout history flat feet were seen as a sign of low class and poor health, and high arches were seen as high class and full of vigor. Research has shown that the two distinctions are far from the case. The effects of flat feet fall under two categories, which are asymptotic and symptomatic. Individuals with rigid flat feet tend to exhibit symptoms such as foot and knee tendinitis, and are recommended to consider surgical options when managing symptoms. Individuals with flexible flat generally exhibit asymptotic effects in response to their flat feet.
In fact, according to AAP news and journal gateway, being flexibly flat-footed does not impede athletic performance.
It is generally assumed by running professionals (primarily including some physical trainers, podiatrists, and shoe manufacturers) that a person with flat feet tends to overpronate in the running form. However, some also assert that persons with flat feet may have an underpronating if they are not a neutral gait. With standard running shoes, these professionals claim, a person who overpronates in his or her running form may be more susceptible to shin splints, back problems, and tendonitis in the knee. Running in shoes with extra medial support or using special shoe inserts, orthoses, may help correct one's running form by reducing pronation and may reduce risk of injury.
Blood and synovial fluid may be tested for pathogens in the case of infected synovial structures. Both cytology and bacterial culture can be used to help identify the cause of infection. In adult horses, septic arthritis or tenosynovitis are most commonly seen secondary to joint injection, penetrating injury, or following surgery, and are often from Staphylococcus infection. Foals often develop septic arthritis secondary to systemic infection and hematogenous spread to the joints.
The term osteochondrosis has been used to describe a wide range of lesions among different species. There are different types of the prognosis: latens, which is a lesion restricted to epiphyseal cartilage, manifesta, a lesion paired with a delay in endochondral ossification, and dissecans which is a cleft formation in the articular cartilage.
The prognosis for these conditions is very variable, and depends both on the anatomic site and on the time at which it is detected. In some cases of osteochondrosis, such as Sever's disease and Freiberg's infraction, the involved bone may heal in a relatively normal shape and leave the patient asymptomatic. On the contrary, Legg-Calvé-Perthes disease frequently results in a deformed femoral head that leads to arthritis and the need for joint replacement.