Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hormonal suppressive therapy with luteinizing hormone receptor agonists like leuprolide can be used to treat the seizure component, and are effective in most patients.
Surgery is offered if there is failure of medical therapy or rapid growth of lesion, with specific options including stereotactic thermocoagulation, gamma knife radiosurgery, and physical resection by transsphenoidal microsurgery. Surgical response is typically better when the seizure focus has been found by EEG to originate in or near the mass. The specific location of the lesion relative to the pituitary and infundibulum and the amount of hormonal disturbance at presentation can help predict risk of hypopituitarism following surgery.
Treatment of VAS is through aggressive surgery. As soon as the tumor is recognized, it should be removed with very wide margins to ensure complete removal. Treatment may also include chemotherapy or radiation therapy. The most significant prognostic factor is initial surgical treatment. One study showed that cats with radical (extensive) initial surgery had a median time to recurrence of 325 days versus 79 days for cats with marginal initial excision. The expression of a mutated form of p53, a tumor suppressor gene, is found commonly in VAS and indicates a poorer prognosis.
There is no specific treatment for Chédiak–Higashi syndrome. Bone marrow transplants appear to have been successful in several patients. Infections are treated with antibiotics and abscesses are surgically drained when appropriate. Antiviral drugs such as acyclovir have been tried during the
terminal phase of the disease. Cyclophosphamide and prednisone have been tried. Vitamin C therapy has improved immune function and clotting in some patients.
Prophylactic mastectomy to reduce the risk of breast cancer is an option.
Cimetidine works by slowing tumor growth; it is a histamine blocker that maintains the body’s immune response which aids in the killing of tumor cells. Cimetidine has not been proven to efficiently resolve tumors completely.
Cisplatin is a chemotherapy drug that is injected into the tumor itself; this drug is commonly used along with surgical removal. That being said, this drug has been shown to resolve tumors with or without surgical removal for at least 2 years.
Recommendations for individuals from families affected by the syndrome include:
- Avoidance of radiation therapy to reduce risk of secondary radiation induced malignancies,
- Children and adults undergo comprehensive annual physical examination,
- Women undergo age specific breast cancer monitoring beginning at age 25 years, and
- All patients should consult a physician promptly for evaluation of lingering symptoms and illnesses.
Chemotherapy is often used as part of treatment. Evidence of benefit, however, is not clear as of 2013. A few different chemotherapeutic regimens for medulloblastoma are used, but most involve a combination of lomustine, cisplatin, carboplatin, vincristine, or cyclophosphamide. In younger patients (less than 3–4 years of age), chemotherapy can delay, or in some cases possibly even eliminate, the need for radiotherapy. However, both chemotherapy and radiotherapy often have long-term toxicity effects, including delays in physical and cognitive development, higher risk of second cancers, and increased cardiac disease risks.
Treatment begins with maximal surgical removal of the tumor. The addition of radiation to the entire neuraxis and chemotherapy may increase the disease-free survival. Some evidence indicates that proton beam irradiation reduces the impact of radiation on the cochlear and cardiovascular areas and reduces the cognitive late effects of cranial irradiation.
This combination may permit a 5-year survival in more than 80% of cases. The presence of desmoplastic features such as connective tissue formation offers a better prognosis. Prognosis is worse if the child is less than 3 years old, degree of resection is an inadequate , or if any CSF, spinal, supratentorial, or systemic spread occurs. Dementia after radiotherapy and chemotherapy is a common outcome appearing two to four years following treatment. Side effects from radiation treatment can include cognitive impairment, psychiatric illness, bone growth retardation, hearing loss, and endocrine disruption. Increased intracranial pressure may be controlled with corticosteroids or a ventriculoperitoneal shunt.
In 2015 the first consensus guidelines for the diagnosis and treatment of chordoma were published in the Lancet Oncology.
In one study, the 10-year tumor free survival rate for sacral chordoma was 46%. Chondroid chordomas appear to have a more indolent clinical course.
In most cases, complete surgical resection followed by radiation therapy offers the best chance of long-term control. Incomplete resection of the primary tumor makes controlling the disease more difficult and increases the odds of recurrence. The decision whether complete or incomplete surgery should be performed primarily depends on the anatomical location of the tumor and its proximity to vital parts of the central nervous system.
Chordomas are relatively radioresistant, requiring high doses of radiation to be controlled. The proximity of chordomas to vital neurological structures such as the brain stem and nerves limits the dose of radiation that can safely be delivered. Therefore, highly focused radiation such as proton therapy and carbon ion therapy are more effective than conventional x-ray radiation.
There are no drugs currently approved to treat chordoma, however a clinical trial conducted in Italy using the PDGFR inhibitor Imatinib demonstrated a modest response in some chordoma patients. The same group in Italy found that the combination of imatinib and sirolimus caused a response in several patients whose tumors progressed on imatinib alone.
Enucleation (surgical removal of the eye) is the treatment of choice for large ciliary body melanomas. Small or medium sized tumors may be treated by an "iridocyclectomy". Radiotherapy may be appropriate in selected cases.
Small unilocular lesions have been successfully treated with enucleation and curettage followed by chemical bone cautery. Multilocular tumors exhibit a 25% recurrence rate and, therefore, must be treated more aggressively. In the case of a multilocular myxoma, resection of the tumor with a generous portion of surrounding bone is required. Because of the gelatinous nature of the tumor, it is crucial for the surgeon to remove the lesion intact so as to further reduce the risk of recurrence.
Non surgical treatments include steroid injections in the lower back or radiofrequency sensory ablation. Physical therapy interventions are also helpful in early cases and are focused around mobilization, neural stretching, and core strengthening exercises. Surgical intervention is usually a last resort if all conservative methods fail. It can be treated surgically with posterolateral fusion or resection of the transitional articulation.
The standard treatment of COC is enucleation and curettage (E&C). Recurrence following E&C is rare.
Nasopharyngeal carcinoma can be treated by surgery, by chemotherapy, or by radiotherapy. The expression of EBV latent proteins within undifferentiated nasopharyngeal carcinoma can be potentially exploited for immune-based therapies.
As one route to reducing TAMs CSF1R inhibitors have been developed as a possible cancer therapy and many are in early clinical trials. CSF1R inhibitors in clinical trials include : Pexidartinib, PLX7486, ARRY-382, JNJ-40346527, BLZ945, Emactuzumab, AMG820, IMC-CS4. (MCS110 is a CSF1 inhibitor)
Another CSF1R inhibitor that targets/depletes TAMs is Cabiralizumab (cabira; FPA-008) which is a monoclonal antibody and is in early clinical trials for metastatic pancreatic cancer.
Most of these tumors are treated with surgical removal. It is non recurrent.
Immunotherapy research suggests that treatment using "Euphorbia peplus", a common garden weed, may be effective. Australian biopharmaceutical company Peplin is developing this as topical treatment for BCC. Imiquimod is an immunotherapy but is listed here under chemotherapy.
There is no clear form of treatment. Originally, bisphosphonates were expected to be of value after hip surgery but there has been no convincing evidence of benefit, despite having been used prophylactically.
Depending on the growth's location, orientation and severity, surgical removal may be possible.
Radiation Therapy.
Prophylactic radiation therapy for the prevention of heterotopic ossification has been employed since the 1970s. A variety of doses and techniques have been used. Generally, radiation therapy should be delivered as close as practical to the time of surgery. A dose of 7-8 Gray in a single fraction within 24–48 hours of surgery has been used successfully. Treatment volumes include the peri-articular region, and can be used for hip, knee, elbow, shoulder, jaw or in patients after spinal cord trauma.
Single dose radiation therapy is well tolerated and is cost effective, without an increase in bleeding, infection or wound healing disturbances.
Other possible treatments.
Certain antiinflammatory agents, such as indomethacin, ibuprofen and aspirin, have shown some effect in preventing recurrence of heterotopic ossification after total hip replacement.
Conservative treatments such as passive range of motion exercises or other mobilization techniques provided by physical therapists or occupational therapists may also assist in preventing HO. A review article looked at 114 adult patients retrospectively and suggested that the lower incidence of HO in patients with a very severe TBI may have been due to early intensive physical and occupational therapy in conjunction with pharmacological treatment. Another review article also recommended physiotherapy as an adjunct to pharmacological and medical treatments because passive range of motion exercises may maintain range at the joint and prevent secondary soft tissue contractures, which are often associated with joint immobility.
A cure for Werner syndrome has not yet been discovered. It is often treated by managing the associated diseases and relieving symptoms to improve quality of life. The skin ulcers that accompany WS can be treated in several ways, depending on the severity. Topical treatments can be used for minor ulcers, but are not effective in preventing new ulcers from occurring. In the most severe cases, surgery may be required to implant a skin graft or amputate a limb if necessary. Diseases commonly associated with Werner Syndrome such as diabetes and cancer are treated in generally the same ways as they would be for a non-Werner Syndrome individual. A change in diet & exercise can help prevent and control arteriosclerosis, and regular cancer screenings can allow for early detection of cancer.
There is recent evidence that suggests that the cytokine-suppressive anti-inflammatory drug, SB203580, may be a possible therapeutic option for patients with Werner's Syndrome. This drug targets the p38 signaling pathway, which may become activated as a result of genomic instability and stalled replication forks that are characteristic mutations in WS. This activation of p38 may play a role in the onset of premature cell aging, skin aging, cataracts, and graying of the hair. The p38 pathway has also been implicated in the anti-inflammatory response that causes atherosclerosis, diabetes, and osteoporosis, all of which are associated with Werner's Syndrome. This drug has shown to revert the aged characteristics of young WS cells to those seen in normal, young cells and improve the lifespan of WS cells "in vitro". SB203580 is still in the clinical trial stages, and the same results have not yet been seen "in vivo".
In 2010, vitamin C supplementation was found to reverse the premature aging and several tissue dysfunctions in a genetically modified mouse model of the disease. Vitamin C supplementation also appeared to normalize several age-related molecular markers such as the increased levels of the transcription factor NF-κB. In addition, it decreases activity of genes activated in human Werner syndrome and increases gene activity involved in tissue repair. Supplementation of vitamin C is suspected to be beneficial in the treatment of human Werner syndrome, although there was no evidence of anti-aging activity in nonmutant mice. In general, treatments are available for only the symptoms or complications and not for the disease itself.
Radiation therapy can be delivered either as external beam radiotherapy or as brachytherapy (internal radiotherapy). Although radiotherapy is generally used in older patients who are not candidates for surgery, it is also used in cases where surgical excision will be disfiguring or difficult to reconstruct (especially on the tip of the nose, and the nostril rims). Radiation treatment often takes as few as 5 visits to as many as 25 visits. Usually, the more visits scheduled for therapy, the less complication or damage is done to the normal tissue supporting the tumor. Radiotherapy can also be useful if surgical excision has been done incompletely or if the pathology report following surgery suggests a high risk of recurrence, for example if nerve involvement has been demonstrated. Cure rate can be as high as 95% for small tumor, or as low as 80% for large tumors. Usually, recurrent tumors after radiation are treated with surgery, and not with radiation. Further radiation treatment will further damage normal tissue, and the tumor might be resistant to further radiation. Radiation therapy may be contraindicated for treatment of nevoid basal-cell carcinoma syndrome. The 2008 study reported that radiation therapy is a good treatment for primary BCCs and recurrent BCCs, but not for BCCs that have recurred following previous radiation treatment.
Topical 5-fluorouracil (5-FU, Efudex, Carac) has been shown to be an effective therapy for diffuse, but minor actinic cheilitis. 5-fluorouracil works by blocking DNA synthesis. Cells that are rapidly growing need more DNA, so they accumulate more 5-fluorouracil, resulting in their death. Normal skin is much less affected. The treatment usually takes 2–4 weeks depending on the response. The typical response includes an inflammatory phase, followed by redness, burning, oozing, and finally erosion. Treatment is stopped when ulceration and crusting appear. There is minimal scarring. Complete clearance has been reported in about 50% of patients.
Imiquimod (Aldara) is an immune response modifier that has been studied for the treatment of actinic cheilitis. It promotes an immune response in the skin leading to apoptosis (death) of the tumor cells. It causes the epidermis to be invaded by macrophages, which leads to epidermal erosion. T-cells are also activated as a result of imiquimod treatment. Imiquimod appears to promote an “immune memory” that reduces the recurrence of lesions. There is minimal scarring. Complete clearance has been demonstrated in up to 45% of patients with actinic keratoses. However, the dose and duration of therapy, as well as the long-term efficacy, still need to be established in the treatment of actinic cheilitis.
This condition is considered premalignant because it may lead to squamous cell carcinoma in about 10% of all cases. It is not possible to predict which cases will progress into SCC, so the current consensus is that all lesions should be treated.
Treatment options include 5-fluorouracil, imiquimod, scalpel vermillionectomy, chemical peel, electrosurgery, and carbon dioxide laser vaporization. These curative treatments attempt to destroy or remove the damaged epithelium. All methods are associated with some degree of pain, edema, and a relatively low rate of recurrence.
Some benign tumors need no treatment; others may be removed if they cause problems such as seizures, discomfort or cosmetic concerns. Surgery is usually the most effective approach and is used to treat most benign tumors. In some case other treatments may be of use. Adenomas of the rectum may be treated with sclerotherapy, a treatment in which chemicals are used to shrink blood vessels in order to cut off the blood supply. Most benign tumors do not respond to chemotherapy or radiation therapy, although there are exceptions; benign intercranial tumors are sometimes treated with radiation therapy and chemotherapy under certain circumstances. Radiation can also be used to treat hemangiomas in the rectum. Benign skin tumors are usually surgically resected but other treatments such as cryotherapy, curettage, electrodesiccation, laser therapy, dermabrasion, chemical peels and topical medication are used.
New vaccine protocols have been put forth by the American Association of Feline Practitioners that limit type and frequency of vaccinations given to cats. Specifically, the vaccine for feline leukemia virus should only be given to kittens and high risk cats. Feline rhinotracheitis/panleukopenia/calicivirus vaccines should be given as kittens, a year later and then every three years. Also, vaccines should be given in areas making removal of VAS easier, namely: as close as possible to the tip of the right rear paw for rabies, the tip of the left rear paw for feline leukemia (unless combined with rabies), and on the right shoulder—being careful to avoid the midline or interscapular space—for other vaccines (such as FVRCP). There have been no specific associations between development of VAS and vaccine brand or manufacturer, concurrent infections, history of trauma, or environment.