Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most people who have an uncomplicated skin abscess should not use antibiotics. Antibiotics in addition to standard incision and drainage is recommended in persons with severe abscesses, many sites of infection, rapid disease progression, the presence of cellulitis, symptoms indicating bacterial illness throughout the body, or a health condition causing immunosuppression. People who are very young or very old may also need antibiotics. If the abscess does not heal only with incision and drainage, or if the abscess is in a place that is difficult to drain such as the face, hands, or genitals, then antibiotics may be indicated.
In those cases of abscess which do require antibiotic treatment, "Staphylococcus aureus" bacteria is a common cause and an anti-staphylococcus antibiotic such as flucloxacillin or dicloxacillin is used. The Infectious Diseases Society of America advises that the draining of an abscess is not enough to address community-acquired methicillin-resistant "Staphylococcus aureus" (MRSA), and in those cases, traditional antibiotics may be ineffective. Alternative antibiotics effective against community-acquired MRSA often include clindamycin, doxycycline, minocycline, and trimethoprim-sulfamethoxazole. The American College of Emergency Physicians advises that typical cases of abscess from MRSA get no benefit from having antibiotic treatment in addition to the standard treatment. If the condition is thought to be cellulitis rather than abscess, consideration should be given to possibility of strep species as cause that are still sensitive to traditional anti-staphylococcus agents such as dicloxacillin or cephalexin in patients able to tolerate penicillin. Antibiotic therapy alone without surgical drainage of the abscess is seldom effective due to antibiotics often being unable to get into the abscess and their ineffectiveness at low pH levels.
Culturing the wound is not needed if standard follow-up care can be provided after the incision and drainage. Performing a wound culture is unnecessary because it rarely gives information which can be used to guide treatment.
The standard treatment for an uncomplicated skin or soft tissue abscess is opening and draining. There does not appear to be any benefit from also using antibiotics in most cases. A small amount of evidence did not find benefit from packing the abscess with gauze.
Treatment is by removing the pus, antibiotics, sufficient fluids, and pain medication. Steroids may also be useful. Admission to hospital is generally not needed.
The treatment includes lowering the increased intracranial pressure and starting intravenous antibiotics (and meanwhile identifying the causative organism mainly by blood culture studies).
Hyperbaric oxygen therapy (HBO2 or HBOT) is indicated as a primary and adjunct treatment which provides four primary functions.
Firstly, HBOT reduces intracranial pressure. Secondly, high partial pressures of oxygen act as a bactericide and thus inhibits the anaerobic and functionally anaerobic flora common in brain abscess. Third, HBOT optimizes the immune function thus enhancing the host defense mechanisms and fourth, HBOT has been found to be of benefit when brain abscess is concomitant with cranial osteomyleitis.
Secondary functions of HBOT include increased stem cell production and up-regulation of VEGF which aid in the healing and recovery process.
Surgical drainage of the abscess remains part of the standard management of bacterial brain abscesses. The location and treatment of the primary lesion also crucial, as is the removal of any foreign material (bone, dirt, bullets, and so forth).
There are few exceptions to this rule: "Haemophilus influenzae" meningitis is often associated with subdural effusions that are mistaken for subdural empyemas. These effusions resolve with antibiotics and require no surgical treatment. Tuberculosis can produce brain abscesses that look identical to conventional bacterial abscesses on CT imaging. Surgical drainage or aspiration is often necessary to identify "Mycobacterium tuberculosis", but once the diagnosis is made no further surgical intervention is necessary.
CT guided stereotactic aspiration is also indicated in the treatment of brain abscess.
The infection is frequently penicillin resistant. There are a number of antibiotics options including amoxicillin/clavulanate, clindamycin, or metronidazole in combination with benzylpenicillin (penicillin G) or penicillin V. Piperacillin/tazobactam may also be used.
Antibiotics are commonly used as a curing method for pancreatic abscesses although their role remains controversial. Prophylactic antibiotics are normally chosen based on the type of flora and the degree of antibiotic penetration into the abscess. Pancreatic abscesses are more likely to host enteric organisms and pathogens such as "E. coli", "Klebsiella pneumonia", "Enterococcus faecalis", "Staphylococcus aureus", "Pseudomonas aeruginosa", "Proteus mirabilis", and "Streptococcus" species. Medical therapy is usually given to people whose general health status does not allow surgery. On the other hand, antibiotics are not recommended in patients with pancreatitis, unless the presence of an infected abscess has been proved.
Although there have been reported cases of patients who were given medical treatment and survived, primary drainage of the abscess is the main treatment used to cure this condition. Drainage usually involves a surgical procedure. It has been shown that CT-guided drainage brought inferior results than open drainage. Hence, open surgical procedure is preferred to successfully remove the abscess. However, CT-guided drainage is the option treatment for patients who may not tolerate an open procedure. Endoscopic treatment is at the same time a treatment option that increased in popularity over the last years.
RPA's frequently require surgical intervention. A tonsillectomy approach is typically used to access/drain the abscess, and the outcome is usually positive. Surgery in adults may be done without general anesthesia because there is a risk of abscess rupture during tracheal intubation. This could result in pus from the abscess aspirated into the lungs. In complex cases, an emergency tracheotomy may be required to prevent upper airway obstruction caused by edema in the neck.
High-dose intravenous antibiotics are required in order to control the infection and reduce the size of the abscess prior to surgery.
Chronic retropharyngeal abscess is usually secondary to tuberculosis and the patient needs to be started on anti-tubercular therapy as soon as possible.
Antibiotics are usually prescribed, with the agent selected based on suspected organism and presence or absence of purulence, although the best treatment choice is unclear. If an abscess is also present, surgical drainage is usually indicated, with antibiotics often prescribed for co-existent cellulitis, especially if extensive. Pain relief is also often prescribed, but excessive pain should always be investigated, as it is a symptom of necrotizing fasciitis. Elevation of the affected area is often recommended.
Steroids may speed recovery in those on antibiotics.
Anal abscesses are rarely treated with a simple course of antibiotics. In almost all cases surgery will need to take place to remove the abscess. Treatment is possible in an emergency room under local anesthesia, but it is highly preferred to be formally admitted to a hospital and to have the surgery performed in an operating room under general anesthesia.
Generally speaking, a fairly small but deep incision is performed close to the root of the abscess. The surgeon will allow the abscess to drain its exudate and attempt to discover any other related lesions in the area. This is one of the most basic types of surgery, and is usually performed in less than thirty minutes by the anal surgical team. Generally, a portion of the exudate is sent for microbiological analysis to determine the type of infecting bacteria. The incision is not closed (stitched), as the damaged tissues must heal from the inside toward the skin over a period of time.
The affected individual is often sent home within twenty-four hours of the surgery, and may be instructed to perform several 'sitz baths' per day, whereby a small basin (which usually fits over a toilet) is filled with warm water (and possibly, salts) and the affected area is soaked for a period of time. Another method of recovery involves the use of surgical packing, which is initially inserted by the surgical team, with redressing generally performed by hospital staff or a District Nurse (however, following the results of several double-blind studies, the effectiveness of surgical packing has come into question). During the week following the surgery, many patients will have some form of antibiotic therapy, along with some form of pain management therapy, consistent with the nature of the abscess.
The patient usually experiences an almost complete relief of the severe pain associated to his/her abscess upon waking from anesthesia; the pain associated with the opening and draining incision during the post-operative period is often mild in comparison.
Antibiotics choices depend on regional availability, but a penicillinase-resistant semisynthetic penicillin or a first-generation cephalosporin is currently recommended for cellulitis without abscess. A course of antibiotics is not effective in between 6 and 37% of cases.
The outlook is generally based on the severity of the infection. It is however a severe complication which may result in the death of the patient if the appropriate treatment is not administered. Patients are at risk of sepsis and multiple organ failure and in cases in which the infected abscess is not removed through surgery, the mortality rate can reach 100%.
Lemierre's syndrome is primarily treated with antibiotics given intravenously. "Fusobacterium necrophorum" is generally highly susceptible to beta-lactam antibiotics, metronidazole, clindamycin and third generation cephalosporins while the other fusobacteria have varying degrees of resistance to beta-lactams and clindamycin. Additionally, there may exist a co-infection by another bacterium. For these reasons is often advised not to use monotherapy in treating Lemierre's syndrome. Penicillin and penicillin-derived antibiotics can thus be combined with a beta-lactamase inhibitor such as clavulanic acid or with metronidazole. Clindamycin can be given as monotherapy.
If antibiotic therapy does not improve the clinical picture, it may prove useful to drain any abscesses and/or perform ligation of the internal jugular vein where the antibiotic can not penetrate.
There is no evidence to opt for or against the use of anticoagulation therapy. The low incidence of Lemierre's syndrome has not made it possible to set up clinical trials to study the disease.
The disease can often be untreatable, especially if other negative factors occur, i.e. various diseases occurring at the same time, such as meningitis, pneumonia.
Broadspectrum antibiotic to cover mixed flora is the mainstay of treatment. Pulmonary physiotherapy and postural drainage are also important. Surgical procedures are required in selective patients for drainage or pulmonary resection.
Incision drainage with proper evacuation of the fluid followed by anti-tubercular medication.
Treatment for TOA differs from PID in that some clinicians recommend patients with tubo-ovarian abscesses have at least 24 hours of inpatient parenteral treatment with antibiotics, and that they may require surgery. If surgery becomes necessary, pre-operative administration of broad-spectrum antibiotics is started and removal of the abscess, the affected ovary and fallopian tube is done. After discharge from the hospital, oral antibiotics are continued for the length of time prescribed by the physician.
Treatment is different if the TOA is discovered before it ruptures and can be treated with IV antibiotics. During this treatment, IV antibiotics are usually replaced with oral antibiotics on an outpatient basis. Patients are usually seen three days after hospital discharge and then again one to two weeks later to confirm that the infection has cleared. Ampicillin/sulbactam plus doxycycline is effective against C. trachomatis, N. gonorrhoeae, and anaerobes in women with tubo-ovarian abscess. Parenteral Regimens described by the Centers for Disease Control and prevention are Ampicillin/Sulbactam 3 g IV every 6 hours and Doxycycline 200 mg orally or IV every 24 hours, though other regiemes that are used for pelvic inflammatory disease have been effective.
Mainly surgical approach has to be taken.
If cavity is small then surgical evacuation & curettage is performed under antibiotic cover.
If cavity is large then after evacuation, packing with cancellous bone chips
If ear infections are treated in a reasonable amount of time, the antibiotics will usually cure the infection and prevent its spread. For this reason, mastoiditis is rare in developed countries. Most ear infections occur in infants as the eustachian tubes are not fully developed and don't drain readily.
In all developed countries with up-to-date modern healthcare the primary treatment for mastoiditis is administration of intravenous antibiotics. Initially, broad-spectrum antibiotics are given, such as ceftriaxone. As culture results become available, treatment can be switched to more specific antibiotics directed at the eradication of the recovered aerobic and anaerobic bacteria. Long-term antibiotics may be necessary to completely eradicate the infection. If the condition does not quickly improve with antibiotics, surgical procedures may be performed (while continuing the medication). The most common procedure is a myringotomy, a small incision in the tympanic membrane (eardrum), or the insertion of a tympanostomy tube into the eardrum. These serve to drain the pus from the middle ear, helping to treat the infection. The tube is extruded spontaneously after a few weeks to months, and the incision heals naturally. If there are complications, or the mastoiditis does not respond to the above treatments, it may be necessary to perform a mastoidectomy: a procedure in which a portion of the bone is removed and the infection drained.
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
Most cases respond to antibiotics and prognosis is usually excellent unless there is a debilitating underlying condition. Mortality from lung abscess alone is around 5% and is improving.
Successful treatment of a dental abscess centers on the reduction and elimination of the offending organisms.
This can include treatment with antibiotics and drainage. If the tooth can be restored, root canal therapy can be performed. Non-restorable teeth must be extracted, followed by curettage of all apical soft tissue.
Unless they are symptomatic, teeth treated with root canal therapy should be evaluated at 1- and 2-year intervals after the root canal therapy to rule out possible lesional enlargement and to ensure appropriate healing.
Abscesses may fail to heal for several reasons:
- Cyst formation
- Inadequate root canal therapy
- Vertical root fractures
- Foreign material in the lesion
- Associated periodontal disease
- Penetration of the maxillary sinus
Following conventional, adequate root canal therapy, abscesses that do not heal or enlarge are often treated with surgery and filling the root tips; and will require a biopsy to evaluate the diagnosis.
An important factor is whether the involved tooth is to be extracted or retained. Although the pulp is usually still vital, a history of recurrent periodontal abscesses and significantly compromised periodontal support indicate that the prognosis for the tooth is poor and it should be removed.
The initial management of a periodontal abscess involves pain relief and control of the infection. The pus needs to be drained, which helps both of these aims. If the tooth is to be removed, drainage will occur via the socket. Otherwise, if pus is already discharging from the periodontal pocket, this can be encouraged by gentle irrigation and scaling of the pocket whilst massaging the soft tissues. If this does not work, incision and drainage is required, as described in Dental abscess#Treatment.
Antibiotics are of secondary importance to drainage, which if satisfactory renders antibiotics unnecessary. Antibiotics are generally reserved for severe infections, in which there is facial swelling, systemic upset and elevated temperature. Since periodontal abscesses frequently involve anaerobic bacteria, oral antibiotics such as amoxicillin, clindamycin (in penicillin allergy or pregnancy) and/or metronidazole are given. Ideally, the choice of antibiotic is dictated by the results of microbiological culture and sensitivity testing of a sample of the pus aspirated at the start of any treatment, but this rarely occurs outside the hospital setting.
Other measures that are taken during management of the acute phase might include reducing the height of the tooth with a dental drill, so it no longer contacts the opposing tooth when biting down; and regular use of hot salt water mouth washes (antiseptic and encourages further drainage of the infection).
The management following the acute phase involves removing any residual infection, and correcting the factors that lead to the formation of the periodontal abscess. Usually, this will be therapy for periodontal disease, such as oral hygiene instruction and periodontal scaling.
Treatment generally consists of surgical drainage, and long-term (6 to 8 weeks) use of antibiotics.
The treatment of invasive amoebiasis should be directed to all sites where "E. histolytica" may be present. Hence the ideal amoebicide should be able to act within the intestinal lumen, in the intestinal wall, and systemically, particularly in the liver.
Systemic amoebicidal drugs include emetine, dehydroemetine, chloroquine diphosphate, metronidazole, and tinidazole.
Treatment usually includes antibiotics, and reducing the mobility of the affected region, either with a back brace or a plaster cast. Without treatment, the patient may form an abscess which may need to be surgically corrected. Due to the poor vascularity of the disc, drugs required for treatment often include potent agents such as Ciprofloxacin along with Vancomycin. Occasionally, oral drugs can be used to treat the infection but it may fail and IV drugs may be required.
If the patient is an adult many surgeons and doctors now recommend moving little and often and within the pain limits of the medication. Discs respond to osmotic pressure therefore movement is beneficial to increase their blood flow and fluid dynamics. This is why disc patients are no longer told to bed rest. In children whether to bed rest or move a little is decided on an individual basis, depending on the site and severity of the discitis.
Treatment is problematic unless an underlying endocrine disorder can be successfully diagnosed and treated.
A study by Goepel and Panhke provided indications that the inflammation should be controlled by bromocriptine even in absence of hyperprolactinemia.
Antibiotic treatment is given in case of acute inflammation. However, this alone is rarely effective, and the treatment of a subareaolar abscess is primarily surgical. In case of an acute abscess, incision and drainage are performed, followed by antibiotics treatment. However, in contrast to peripheral breast abscess which often resolves after antibiotics and incision and drainage, subareaolar breast abscess has a tendency to recur, often accompanied by the formation of fistulas leading from inflammation area to the skin surface. In many cases, in particular in patients with recurrent subareolar abscess, the excision of the affected lactiferous ducts is indicated, together with the excision of any chronic abscess or fistula. This can be performed using radial or circumareolar incision.
There is no universal agreement on what should be the standard way of treating the condition. In a recent review article, antibiotics treatment, ultrasound evaluation and, if fluid is present, ultrasound-guided fine needle aspiration of the abscess with an 18 gauge needle, under saline lavage until clear, has been suggested as initial line of treatment for breast abscess in puerperal and non-puerperal cases including central (subareolar) abscess (see breast abscess for details). Elsewhere, it has been stated that treatment of subareolar abscess is unlikely to work if it does not address the ducts as such.
Duct resection has been traditionally used to treat the condition; the original Hadfield procedure has been improved many times but long term success rate remains poor even for radical surgery. Petersen even suggests that damage caused by previous surgery is a frequent cause of subareolar abscesses. Goepel and Pahnke and other authors recommend performing surgeries only with concomitant bromocriptine treatment.