Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In order for successful treatment of abrasion to occur, the aetiology first needs to be identified. The most accurate way of doing so is completing a thorough medical, dental, social and diet history. All aspects needs to be investigated as in many cases the cause of abrasion can be multi-factorial. Once a definitive diagnosis is completed the appropriate treatment can commence.
Treatment for abrasion can present in varying difficulties depending on the current degree or progress caused by the abrasion. Abrasion often presents in conjunction with other dental conditions such as attrition, decay and erosion however the below treatment is for abrasion alone. Successful treatment focuses on the prevention and progression on the condition and modifies the current habit/s instigating the condition.
If the aetiology of abrasion is due to habitual behaviours, the discontinuation and change of habit is critical in the prevention of further tooth loss. The correct brushing technique is pivotal and involves a gentle scrub technique with small horizontal movements with an extra-soft/soft bristle brush. Excessive lateral force can be corrected by holding the toothbrush in a pen grasp or by using the non-dominant hand to brush. If abrasion is the result of an ill-fitting dental appliance, this should be corrected or replaced by a dental practitioner and should not be attempted in a home setting.
At-home treatments include desensitizing toothpastes or dentifrices, potassium salts, mouthwashes and chewing gums.
A variety of toothpastes are marketed for dentin hypersensitivity, including compounds such as strontium chloride, strontium acetate, arginine, calcium carbonate, hydroxyapatite and calcium sodium phosphosilicate. Desensitizing chewing gums and mouthwashes are also marketed.
Potassium-containing toothpastes are common; however, the mechanism by which they may reduce hypersensitivity is unclear. Animal research has demonstrated that potassium ions placed in deep dentin cavities cause nerve depolarization and prevent re-polarization. It is not known if this effect would occur with the twice-daily, transient and small increase in potassium ions in saliva that brushing with potassium-containing toothpaste creates. In individuals with dentin hypersensitivity associated with exposed root surfaces, brushing twice daily with toothpaste containing 5% potassium nitrate for six to eight weeks reduces reported sensitivity to tactile, thermal and air blast stimuli. However, meta analysis reported that these individuals' subjective report of sensitivity did not significantly change after six to eight weeks of using the potassium nitrate toothpaste.
Desensitizing toothpastes containing potassium nitrate have been used since the 1980s while toothpastes with potassium chloride or potassium citrate have been available since at least 2000. It is believed that potassium ions diffuse along the dentinal tubules to inactivate intradental nerves. However, , this has not been confirmed in intact human teeth and the desensitizing mechanism of potassium-containing toothpastes remains uncertain. Since 2000, several trials have shown that potassium-containing toothpastes can be effective in reducing dentin hypersensitivity, although rinsing the mouth after brushing may reduce their efficacy.
Studies have found that mouthwashes containing potassium salts and fluorides can reduce dentine hypersensitivity, although rarely to any significant degree. , no controlled study of the effects of chewing gum containing potassium chloride has been made, although it has been reported as significantly reducing dentine hypersensitivity.
Nano-hydroxyapatite (nano-HAp) is considered one of the most biocompatible and bioactive materials, and has gained wide acceptance in dentistry in recent years. An increasing number of reports have shown that nano-hydroxyapatite shares characteristics with the natural building blocks of enamel having the potential, due to its particle size, to occlude exposed dentinal tubules helping to reduce hypersensitivity and enhancing teeth remineralization.
For this reason, the number of toothpastes and mouthwashes that already incorporate nano-hydroxyapatite as a desensitizing agent is increasing.
Cosmetic or functional intervention may be required if tooth surface loss is pathological or if there has been advanced loss of tooth structure. The first stage of treatment involves managing any associated conditions, such as fractured teeth or sharp cusps or incisal edges. These can be resolved by restoring and polishing sharp cusps. Then, desensitizing agents such as topical fluoride varnishes can be applied, and at home desensitising toothpastes recommended. Many restorative options have been proposed, such as direct composite restorations, bonded cast metal restorations, removable partial dentures, orthodontic treatment, crown lengthening procedures and protective splints. The decision to restore the dentition depends on the wants and needs of the patient, the severity of tooth surface loss and whether tooth surface loss is active. The use of adhesive materials to replace lost tooth structure can be performed as a conservative and cost-effective approach before a more permanent solution of crowns or veneers is considered.
When a diagnosis of bruxism has been confirmed, it is recommended that the patient buy a full-coverage acrylic occlusal splint, such as a Michigan Splint or Tanner appliance, to prevent further bruxism. Patients must be monitored closely, with clinical photographs 6–12 monthly to evaluate if the tooth surface loss is being prevented.
Gingival recession and cervical tooth wear can be avoided by healthy dietary and oral hygiene practices. By using a non-traumatic toothbrushing technique (i.e. a recommended technique such as the modified Bass technique rather than indiscriminately brushing the teeth and gums in a rough scrubbing motion) will help prevent receding gums and tooth wear around the cervical margin of teeth. Non-abrasive toothpaste should be used, and brushing should be carried out no more than twice per day for two minutes on each occasion. Excessive use of acidic conditions around the teeth should be avoided by limiting consumption of acidic foods and drinks, and seeking medical treatment for any cause of regurgitation/reflux of stomach acid. Importantly, the teeth should not be brushed immediately after acidic foods or drinks. A non-abrasive diet will also help to prevent tooth wear. Flossing each day also helps to prevent gum recession caused by gum disease.
Teeth whitening products can make your teeth sensitive. However, the increased sensitivity is temporary and will go away within a few days. If teeth sensitivity is experienced after using a teeth whitening product, taking a break may help.
Dental fluorosis may or may not be of cosmetic concern. In some cases, there may be varying degrees of negative psychosocial effects. The treatment options are:
- Tooth bleaching
- Micro-abrasion
- Composite fillings
- Veneers
- Crowns
Generally, more conservative options such as bleaching are sufficient for mild cases.
Preventive and management strategies include the following:
- Avoid sweet and acid foods. Even low sugar contained in fruit is bad for the teeth since it is the sugar/acid exposure time which erodes the teeth, not the amount of sugar.
- Modifying the pH of the food or beverage contributing to the problem, or changing lifestyle to avoid the food or beverage.
- Rinsing immediately after drinking or eating.
- Drinking through a straw
- Avoid abrasive forces. Use a soft bristled toothbrush and brush gently. Avoid brushing immediately after consuming acidic food and drink as teeth will be softened. Leave at least half an hour of time in between. Rinsing with water is better than brushing after consuming acidic foods and drinks.
- Using a remineralizing agent, such as sodium fluoride solution in the form of a fluoride mouthrinse, tablet, or lozenge, immediately before brushing teeth.
- Applying fluoride gels or varnishes to the teeth.
- Drinking milk or using other dairy products.
- Dentine bonding agents applied to areas of exposed dentin
- Use a neutralizing agent such as antacid tablets only as a last-resort. They have negative long-run effects.
- Treating the underlying medical disorder or disease.
The College of Registered Dental Hygienists of Alberta (CRDHA) defines a dental hygienist as "a health care professional whose work focuses on the oral health of an individual or community." These dental professionals aim to improve oral health by educating patients on the prevention and management of oral disease. Dental hygienists can be found performing oral health services in various settings, including private dental offices, schools, and other community settings, such as long-term care facilities. As mentioned above in the clinical significance section, plaque and calculus deposits are a major etiological factor in the development and progression of oral disease. An important part of the scope of practice of a dental hygienist is the removal of plaque and calculus deposits. This is achieved through the use of specifically designed instruments for debridement of tooth surfaces. Treatment with these types of instruments is necessary as calculus deposits cannot be removed by brushing or flossing alone. To effectively manage disease or maintain oral health, thorough removal of calculus deposits should be completed at frequent intervals. The recommended frequency of dental hygiene treatment can be made by a registered professional, and is dependent on individual patient needs. Factors that are taken into consideration include an individual's overall health status, tobacco use, amount of calculus present, and adherence to a professionally recommended home care routine.
Hand instruments are specially designed tools used by dental professionals to remove plaque and calculus deposits that have formed on the teeth. These tools include scalers, curettes, jaquettes, hoes, files and chisels. Each type of tool is designed to be used in specific areas of the mouth. Some commonly used instruments include sickle scalers which are designed with a pointed tip and are mainly used supragingivally. Curettes are mainly used to remove subgingival calculus, smooth root surfaces and to clean out periodontal pockets. Curettes can be divided into two subgroups: universals and area specific instruments. Universal curettes can be used in multiple areas, while area specific instruments are designed for select tooth surfaces. Gracey curettes are a popular type of area specific curettes. Due to their design, area specific curettes allow for better adaptation to the root surface and can be slightly more effective than universals. Hoes, chisels, and files are less widely used than scalers and curettes. These are beneficial when removing large amounts of calculus or tenacious calculus that cannot be removed with a curette or scaler alone. Chisels and hoes are used to remove bands of calculus, whereas files are used to crush burnished or tenacious calculus.
For hand instrumentation to be effective and efficient, it is important for clinicians to ensure that the instruments being used are sharp. It is also important for the clinician to understand the design of the hand instruments to be able to adapt them properly.
Ultrasonic scalers, also known as power scalers, are effective in removing calculus, stain, and plaque. These scalers are also useful for root planing, curettage, and surgical debridement. Not only is tenacious calculus and stain removed more effectively with ultrasonic scalers than with hand instrumentation alone, it is evident that the most satisfactory clinical results are when ultrasonics are used in adjunct to hand instrumentation. There are two types of ultrasonic scalers; piezoelectric and magnetostrictive. Oscillating material in both of these handpieces cause the tip of the scaler to vibrate at high speeds, between 18,000 and 50,000 Hz. The tip of each scaler uses a different vibration pattern for removal of calculus. The magnetostrictive power scaler vibration is elliptical, activating all sides of the tip, whereas the piezoelectric vibration is linear and is more active on the two sides of the tip.
Special tips for ultrasonic scalers are designed to address different areas of the mouth and varying amounts of calculus buildup. Larger tips are used for heavy subgingival or supragingival calculus deposits, whereas thinner tips are designed more for definitive subgingival debridement. As the high frequency vibrations loosen calculus and plaque, heat is generated at the tip. A water spray is directed towards the end of the tip to cool it as well as irrigate the gingiva during debridement. Only the first 1–2 mm of the tip on the ultrasonic scaler is most effective for removal, and therefore needs to come into direct contact with the calculus to fracture the deposits. Small adaptations are needed in order to keep the tip of the scaler touching the surface of the tooth, while overlapping oblique, horizontal, or vertical strokes are used for adequate calculus removal.
Current research on potentially more effective methods of subgingival calculus removal focuses on the use of near-ultraviolet (NUV) and near-infrared lasers, such as Er,Cr:YSGG lasers. The use of lasers in periodontal therapy offers a unique clinical advantage over conventional hand instrumentation, as the thin and flexible fibers can deliver laser energy into periodontal pockets that are otherwise difficult to access. Near-infrared lasers, such as the Er,CR:YSGG laser, have been proposed as an effective adjunct for calculus removal as the emission wavelength is highly absorbed by water, a large component of calculus deposits. An optimal output power setting of 1.0-W with the near-infrared Er,Cr:YSGG laser has been shown to be effective for root scaling. Near-ultraviolet (NUV) lasers have also shown promise as they allow the dental professional to remove calculus deposits quickly, without removing underlying healthy tooth structure, which often occurs during hand instrumentation. Additionally, NUV lasers are effective at various irradiation angles for calculus removal. Discrepancies in the efficiency of removal are due to the physical and optical properties of the calculus deposits, not to the angle of laser use. Dental hygienists must receive additional theoretical and clinical training on the use of lasers, where legislation permits.
Bruxism can cause significant tooth wear if it is severe, and sometimes dental restorations (crowns, fillings etc.) are damaged or lost, sometimes repeatedly. Most dentists therefore prefer to keep dental treatment in people with bruxism very simple and only carry it out when essential, since any dental work is likely to fail in the long term. Dental implants and complex bridgework for example are relatively contraindicated in bruxists. In the case of crowns, the strength of the restoration becomes more important, sometimes at the cost of aesthetic considerations. E.g. a full coverage gold crown, which has a degree of flexibility and also involves less removal (and therefore less weakening) of the underlying natural tooth may be more appropriate than other types of crown which are primarily designed for esthetics rather than durability. Porcelain veneers on the incisors are particularly vulnerable to damage, and sometimes a crown can be perforated by occlusal wear.
Many different medications have been used to treat bruxism, including benzodiazepines, anticonvulsants, beta blockers, dopamine agents, antidepressants, muscle relaxants, and others. However, there is little, if any, evidence for their respective and comparative efficacies with each other and when compared to a placebo. A systematic review is underway to investigate the evidence for drug treatments in sleep bruxism.
Specific drugs that have been studied in sleep bruxism are clonazepam, levodopa, amitriptyline, bromocriptine, pergolide, clonidine, propranolol, and l-tryptophan, with some showing no effect and others appear to have promising initial results; however, it has been suggested that further safety testing is required before any evidence-based clinical recommendations can be made. When bruxism is related to the use of selective serotonin reuptake inhibitors in depression, adding buspirone has been reported to resolve the side effect. Tricyclic antidepressants have also been suggested to be preferable to selective serotonin reuptake inhibitors in people with bruxism, and may help with the pain.
Dental erosion can occur by non-extrinsic factors too. Intrinsic dental erosion is known as perimolysis, whereby gastric acid from the stomach comes into contact with the teeth. People with illnesses such as anorexia nervosa, bulimia, and gastroesophageal reflux disease (GERD) often suffer from this. GERD is quite common and an average of 7% of adults experience reflux daily. The main cause of GERD is increased acid production by the stomach. This is not exclusive to adults, as GERD and other gastrointestinal disorders may cause dental erosions in children. Rumination also may cause acid erosion.
Abfraction is loss of tooth substance at the cervical margins, purportedly caused by minute flexure of teeth under occlusal loading. The term is derived from the Latin words "ab" and "functio" meaning ‘away’ and ‘breaking’ respectively. Abfraction presents as triangular lesions along the Cervical margins of the buccal surfaces of the teeth where the enamel is thinner and therefore, in the presence of occluding forces, is prone to fracture. Whether abfraction exists or not is debated.
Erosion is chemical dissolution of tooth substance caused by acids, unrelated to the acid produced by bacteria in dental plaque. Erosion may occur with excessive consumption of acidic foods and drinks, or medical conditions involving repeated regurgitation and reflux of gastric acid. derived from the Latin word "erosum", which describes the action ‘to corrode’. This is usually on the palatal (inside) surfaces of upper front teeth and the occluding (top) surfaces of the molar teeth.
- Gastroesophageal reflux disease (GERD)
- Vomiting, e.g. bulimia, alcoholism
- Rumination
- Eructation (burping)
- Dietary - liquids of low pH and high titratable acids.
The most superficial concern in dental fluorosis is aesthetic changes in the permanent dentition (the adult teeth). The period when these teeth are at highest risk of developing fluorosis is between when the child is born up to 6 years old, though there has been some research which proposes that the most crucial course is during the first 2 years of the child's life. From roughly 7 years old thereafter, most children's permanent teeth would have undergone complete development (except their wisdom teeth), and therefore their susceptibility to fluorosis is greatly reduced, or even insignificant, despite the amount of intake of fluoride. The severity of dental fluorosis depends on the amount of fluoride exposure, the age of the child, individual response, weight, degree of physical activity, nutrition, and bone growth. Individual susceptibility to fluorosis is also influenced by genetic factors.
Many well-known sources of fluoride may contribute to overexposure including dentifrice/fluoridated mouthrinse (which young children may swallow), excessive ingestion of fluoride toothpaste, bottled waters which are not tested for their fluoride content, inappropriate use of fluoride supplements, ingestion of foods especially imported from other countries, and public water fluoridation. The last of these sources is directly or indirectly responsible for 40% of all fluorosis, but the resulting effect due to water fluoridation is largely and typically aesthetic. Severe cases can be caused by exposure to water that is naturally fluoridated to levels well above the recommended levels, or by exposure to other fluoride sources such as brick tea or pollution from high fluoride coal.
In dentistry, calculus or tartar is a form of hardened dental plaque. It is caused by precipitation of minerals from saliva and gingival crevicular fluid (GCF) in plaque on the teeth. This process of precipitation kills the bacterial cells within dental plaque, but the rough and hardened surface that is formed provides an ideal surface for further plaque formation. This leads to calculus buildup, which compromises the health of the gingiva (gums). Calculus can form both along the gumline, where it is referred to as supragingival ("above the gum"), and within the narrow sulcus that exists between the teeth and the gingiva, where it is referred to as subgingival ("below the gum").
Calculus formation is associated with a number of clinical manifestations, including bad breath, receding gums and chronically inflamed gingiva. Brushing and flossing can remove plaque from which calculus forms; however, once formed, it is too hard and firmly attached to be removed with a toothbrush. Calculus buildup can be removed with ultrasonic tools or dental hand instruments (such as a periodontal scaler).
Treatment for fiddler’s neck is unnecessary if it is painless and shows minimal swelling, particularly since minor cases are taken as a mark of pride. But fiddler’s neck may lead to worse disorders. The primary methods of treatment involve adjustments to playing of the instrument:
- good hygiene for the affected area and for the instrument
- use of a clean cotton cloth that is changed frequently
- use of a shoulder rest to reduce pressure below the jaw
- a suitable chin rest, especially one carved or molded for the individual
- Covering or changing potentially allergenic materials on the instrument.
- shifting the chin rest to the center of the body over the tailpiece
- smoothing coarse surfaces to reduce abrasion
- for males, growing a beard to avoid folliculitis
Surgery is necessary for sialolithiasis, parotid tumors, and cysts. Cervical lymph nodes that are larger than 1 cm must be biopsied. Connective tissue can be removed by excision when a non-inflamed mass is large, and there is generally little recurrence. Infections should be treated conservatively, and causative species should be identified through smear and culture for appropriate antibiotic selection. Reduction of playing time may be helpful for cases without inflammation, but in 30% of cases this did not improve the symptoms.
Corns and calluses are easier to prevent than to treat. When it is usually not desirable to form a callus, minimizing rubbing and pressure will prevent callus formation. Footwear should be properly fitted, gloves may be worn, and protective pads, rings or skin dressings may be used. People with poor circulation or sensation should check their skin often for signs of rubbing and irritation so they can minimize any damage.
Calluses and corns may go away by themselves eventually, once the irritation is consistently avoided. They may also be dissolved with keratolytic agents containing salicylic acid, sanded down with a pumice stone or silicon carbide sandpaper or filed down with a callus shaver, or pared down by a professional such as a podiatrist or a foot health practitioner.
Dental calculus (tartar) is a hard substance formed on the teeth from the mineralization of plaque. Dental tartar primarily comes from wet food which get stuck to the teeth for extended periods of time. Tartar can be avoided by ferrets eating raw meat, bones and preferably whole prey. The biomechanics of consuming meat and bones will keep the teeth clean. Left to itself, tartar may lead to gingivitis which in turn can lead to a dental abscess, bone loss, infections which may spread bacteria through the bloodstream to internal organs and lead to death if not treated. Tartar can be removed either mechanical or by ultrasound at a veterinarian (this usually involves anesthesia), a small toothbrush can also be used as a preventive measure if one is unable to feed the animal with raw meat. Tartar can be prevented by feeding raw food or giving specially made gelatin treats for ferrets.
Dental abrasion or tooth wear is common in ferrets, and is caused by mechanical wear of the teeth. Eating manufactured dry food (kibble) will erode (due to the hard and extremely dry kibble) the carnassial teeth of the ferret, the wear from the eating kibble can become significant with old age (after three to five years). If teeth are overly ground down, a ferret cannot use them as scissors to eat raw meat. Tooth erosion eventually affects a ferret's ability to eat solid food. Dental abrasion can also be caused by excessive chewing on fabrics or toys, and cage biting. If the ferret engages in these activities a lot, it might be a sign of boredom, and more stimulating activities (such as play) should rectify the situation.
Hairballs can occur in ferrets, but are not readily expelled by vomiting like the way cats deal with them. One or more hairballs in a ferret may lead to loss of appetite and subsequent weight loss. A hairball may enter the intestine and cause a life-threatening obstruction. Ferrets typically replace their coats twice a year, and at that time require brushing to remove loose hairs before they can be ingested, and possibly administration of a hairball remedy as a preventive. Artificial lighting or administration of certain medications may alter the normal spring and fall seasonal coat changes in the ferret.
Proper diagnosis is essential for optimal treatment. Bacterial corneal ulcer require intensive fortified antibiotic therapy to treat the infection. Fungal corneal ulcers require intensive application of topical anti-fungal agents. Viral corneal ulceration caused by herpes virus may respond to antivirals like topical acyclovir ointment instilled at least five times a day. Alongside, supportive therapy like pain medications are given, including topical cycloplegics like atropine or homatropine to dilate the pupil and thereby stop spasms of the ciliary muscle. Superficial ulcers may heal in less than a week. Deep ulcers and descemetoceles may require conjunctival grafts or conjunctival flaps, soft contact lenses, or corneal transplant. Proper nutrition, including protein intake and Vitamin C are usually advised. In cases of Keratomalacia, where the corneal ulceration is due to a deficiency of Vitamin A, supplementation of the Vitamin A by oral or intramuscular route is given. Drugs that are usually contraindicated in corneal ulcer are topical corticosteroids and anesthetics - these should not be used on any type of corneal ulcer because they prevent healing, may lead to superinfection with fungi and other bacteria and will often make the condition much worse.
Enrofloxacin and trimethoprim potentiated sulfonamides are amongst the antibiotics commonly prescribed by veterinarians to treat severe bacterial infection of the pastern. Systemic antifungal therapy is rarely necessary, but ketoconazole, itraconazole, and fluconazole are sometimes recommended with variable success.
Antiparasitic treatment is necessary only if mites or mange have been identified or if there is a need to repel insects such as Culicoides. Permethrins at concentration greater than 2%, fipronil spray or ivermectin orally have been used successfully. The essential oil of lemongrass (Cymbopogon citratus) is a good choice for a natural insect repellent.
Treatment is aimed at reducing itching and minimizing existing lesions because rubbing and scratching exacerbate LSC. The itching and inflammation may be treated with a lotions or steroid cream (such as triamcinolone or Betamethasone) applied to the affected area of the skin. Nighttime scratching can be reduced with sedatives and antihistamines. SSRIs can effectively reduce the scratching associated with obsessive psychosomatic behaviors.